精英家教网 > 高中数学 > 题目详情
13.下列说法错误的是(  )
A.与众数、中位数相比,平均数可以反映出更多的关于样本数据全体的信息
B.标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小
C.人体的脂肪含量y与年龄x满足回归方程$\widehat{y}$=0.577x-0.448,当x=37时,$\widehat{y}$=0.209,这表明某人37岁时,其体内的脂肪含量一定是20.9%
D.在样本数据较少时,用茎叶图表示数据不但可以保留数据的全部信息,而且可以随时记录

分析 分别根据命题的条件进行判断即可.

解答 解:A.与众数、中位数相比,平均数可以反映出更多的关于样本数据全体的信息,正确
B.标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小,正确,
C.当当x=37时,$\widehat{y}$=0.209,这表明某人37岁时,其体内的脂肪含量可能是20.9%,并非一定是,故C错误,
D.在样本数据较少时,用茎叶图表示数据不但可以保留数据的全部信息,而且可以随时记录,正确,
故选:C

点评 本题主要考查命题的真假判断涉及的知识点较多,综合性较强,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.实半轴长等于$2\sqrt{5}$,并且经过点B(5,-2)的双曲线的标准方程是(  )
A.$\frac{x^2}{20}-\frac{y^2}{16}=1$或$\frac{x^2}{16}-\frac{y^2}{20}=1$B.$\frac{x^2}{5}-\frac{y^2}{16}=1$
C.$\frac{x^2}{20}-\frac{y^2}{16}=1$D.$\frac{x^2}{16}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“?n0∈N*,f(n)∈N*且f(n0)>n0的否定形式为(  )
A.?n∈N*,f(n)∉N*或f(n)≤nB.?n∈N*,f(n)∉N*且f(n)>n
C.?n0∈N*,f(n0)∉N*且f(n0)>n0D.?n∈N*,f(n)∉N*且f(n)>n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和${S_n}=2{a_n}-1,n∈{N^*}$,则{an}的通项公式为an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在y轴上的截距为2,且与直线y=-3x-4垂直的直线的斜截式方程为(  )
A.$y=\frac{1}{3}x+2$B.$y=-\frac{1}{3}x-2$C.y=-3x+2D.y=3x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{{\begin{array}{l}{|{{{log}_2}x}|,\;0<x≤4}\\{{x^2}-12x+34\;,x>4}\end{array}}$,若方程f(x)=t,(t∈R)有四个不同的实数根x1,x2,x3,x4,则x1x2x3x4的取值范围为(32,34).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题:
(1)y=|cos(2x+$\frac{π}{6}$)|最小正周期为π;
(2)函数y=tan$\frac{x}{2}$的图象的对称中心是(kπ,0),k∈Z;
(3)f(x)=tanx-sinx在(-$\frac{π}{2}$,$\frac{π}{2}$)上有3个零点;
(4)若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}∥\overrightarrow{c}$,则$\overrightarrow{a}∥\overrightarrow{c}$
其中错误的是(1)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线l过点P(-1,2)且与以点M(-3,-2)、N(4,0)为端点的线段恒相交,则l的斜率取值范围是(  )
A.[-$\frac{2}{5}$,5]B.[-$\frac{2}{5}$,0)∪(0,2]C.(-∞,-$\frac{2}{5}$]∪[5,+∞)D.(-∞,-$\frac{2}{5}$]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A、B.
(1)求直线PA,PB的方程;    
(2)求切线长|PA|的值;
(3)求直线AB的方程.

查看答案和解析>>

同步练习册答案