精英家教网 > 高中数学 > 题目详情
2.直线l过点P(-1,2)且与以点M(-3,-2)、N(4,0)为端点的线段恒相交,则l的斜率取值范围是(  )
A.[-$\frac{2}{5}$,5]B.[-$\frac{2}{5}$,0)∪(0,2]C.(-∞,-$\frac{2}{5}$]∪[5,+∞)D.(-∞,-$\frac{2}{5}$]∪[2,+∞)

分析 由题意画出图形,求出PM、PN所在直线的斜率,数形结合得答案.

解答 解:如图,

∵P(-1,2)、M(-3,-2)、N(4,0),
∴${k}_{PM}=\frac{-2-2}{-3-(-1)}=2$,${k}_{PN}=\frac{0-2}{4-(-1)}=-\frac{2}{5}$.
由图可知,使直线l与线段MN相交的l的斜率取值范围是(-∞,-$\frac{2}{5}$]∪[2,+∞).
故选:D.

点评 本题考查直线的斜率,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.对于函数$f(x)=sin({2x+\frac{π}{6}})$的图象:
①关于直线$x=-\frac{π}{12}$对称;
②关于点$({\frac{5π}{12},0})$对称;
③可看作是把y=sin2x的图象向左平移$\frac{π}{6}$个单位而得到;
④可看作是把$y=sin({x+\frac{π}{6}})$的图象上所有点的纵坐标不变,横坐标缩短到原来的$\frac{1}{2}$倍而得到.
以上叙述正确的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法错误的是(  )
A.与众数、中位数相比,平均数可以反映出更多的关于样本数据全体的信息
B.标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小
C.人体的脂肪含量y与年龄x满足回归方程$\widehat{y}$=0.577x-0.448,当x=37时,$\widehat{y}$=0.209,这表明某人37岁时,其体内的脂肪含量一定是20.9%
D.在样本数据较少时,用茎叶图表示数据不但可以保留数据的全部信息,而且可以随时记录

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若loga3=m,loga5=n,则a2m+n=75.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某学校三个社团的人员分布如下表(每名同学只参加一个社团)
围棋社戏剧社书法社
高中4530a
初中151020
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果围棋社被抽出12人.则这三个社团共有(  )
A.130人B.140人C.150人D.160人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且l1过点M(-3,-1);
(2)l1∥l2,且l1,l2在y轴上的截距互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知θ为第一象限角,设$\overrightarrow a=(\sqrt{3},-sinθ)$,$\overrightarrow b=(cosθ,3)$,且$\overrightarrow a⊥\overrightarrow b$,则θ一定为(  )
A.$\frac{π}{3}+kπ(k∈Z)$B.$\frac{π}{6}+2kπ(k∈Z)$C.$\frac{π}{3}+2kπ(k∈Z)$D.$\frac{π}{6}+kπ(k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.化简sin600°的值是(  )
A.0.5B.-0.5C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设x,y满足$\left\{\begin{array}{l}{y≥0}\\{ax+y-1≤0}\\{3x-2y-2≤0}\end{array}\right.$,若z=x2-10x+y2的最小值为-12,实数a的取值范围是(  )
A.a$≤-\frac{1}{2}$B.a$≤-\frac{3}{2}$C.a$≥\frac{1}{2}$D.a$<\frac{3}{2}$

查看答案和解析>>

同步练习册答案