精英家教网 > 高中数学 > 题目详情
13.设命题p:对任意的x≥0,都有x2+2x+2≥0,则¬p是存在x0≥0,使x02+2x0+2<0.

分析 根据特称命题的否定是全称命题进行求解即可.

解答 解:命题是全称命题,
则命题的否定为:存在x0≥0,使x02+2x0+2<0,
故答案为:存在x0≥0,使x02+2x0+2<0

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$在一个周期内的图象,如图所示.
(1)求函数的解析式;
(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数f(x)=k•xα的图象过点($\frac{1}{2}$,2),则k+α=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).
(Ⅰ)求分数在[70,80)内的频率;
(Ⅱ)根据频率分布直方图,估计该校学生环保知识竞赛成绩的平均分;
(Ⅲ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若曲线y=f(x)在点(a,f(a))处的切线方程为3x-y+1=0,则(  )
A.f′(a)>0B.f′(a)<0C.f′(a)=0D.f'(a)不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:x2-8x-20>0,q:x2-2x+1-m2>0(m>0),若p是q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知平面直角坐标系中,点O为原点,A(-3,-4),B(5,-12)
(1)求$\overrightarrow{AB}$坐标及|$\overrightarrow{AB}$|
(2)求$\overrightarrow{OA}$•$\overrightarrow{OB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=2-4i在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a,b,c分别为角A、B、C的对边,若$\overrightarrow{m}$=(cos2$\frac{A}{2}$,1),$\overrightarrow{n}$=(cos2(B+C),1),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(I)求角A;
(Ⅱ)当a=6,且△ABC的面积S满足$\sqrt{3}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4S}$时,求边c的值和△ABC的面积.

查看答案和解析>>

同步练习册答案