精英家教网 > 高中数学 > 题目详情
10.若球的大圆周长为4π,则这个球的表面积为(  )
A.B.16πC.$\frac{8}{3}$πD.$\frac{16}{3}$

分析 根据大圆周长计算球的半径,从而得出球的表面积.

解答 解:设球的半径为r,则2πr=4π,∴r=2.
∴球的表面积S=4πr2=16π.
故选B.

点评 本题考查了球的表面积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设点P是⊙C:(x-1)2+(y-1)2=8上的点,若点P到直线 l:x+y-4=0的距离为$\sqrt{2}$,则这样的点P共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某校高二年级1000名学生中,血型为O型的有400人,A型的有250人,B型的有250人,AB型的有100人,为了研究血型与色弱之间的关系,要从中抽取1个容量为100的样本,则应从O型血的学生中抽取40人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设变量x、y满足约束条件:$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$,则z=x-3y的最小值为(  )
A.4B.8C.-2D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,该椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,A是椭圆上一点,AF2⊥F1F2,原点O到直线AF1的距离为$\frac{1}{3}$.
(1)求椭圆的方程;
(2)是否存在过F2的直线l交椭圆于P、Q两点,且满足△POQ的面积为$\frac{2}{3}$,若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过F2的直线l与双曲线的两支分别交于点A、B,若△ABF1为等边三角形,则双曲线的离心率为(  )
A.4B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i是虚数单位,则复数$\frac{i}{1+i}$的虚部是(  )
A.$\frac{1}{2}$B.$\frac{1}{2}i$C.$-\frac{1}{2}$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=aln(x+1)-$\frac{1}{2}$x2
(1)若函数f(x)在定义域内单调递减,求a的范围.
(2)若a=2,且f(x1)=f(x2),求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求导数y=2x2sin(2x+5)
(2)求定积分:${∫}_{0}^{1}$$\sqrt{x}$(1+$\sqrt{x}$)dx.

查看答案和解析>>

同步练习册答案