精英家教网 > 高中数学 > 题目详情
19.已知f(x)=sin(x+$\frac{π}{6}$),若sinα=$\frac{3}{5}$(0<α<$\frac{π}{2}}$),则f(α+$\frac{π}{12}}$)=(  )
A.$-\frac{{7\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{\sqrt{2}}}{10}$D.$\frac{{7\sqrt{2}}}{10}$

分析 利用同角三角的基本关系求得cosα,再利用两角和的正弦公式求得f(α+$\frac{π}{12}}$)的值.

解答 解:∵f(x)=sin(x+$\frac{π}{6}$),sinα=$\frac{3}{5}$(0<α<$\frac{π}{2}}$),
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{4}{5}$,
∴f(α+$\frac{π}{12}}$)=sin(α+$\frac{π}{12}$+$\frac{π}{6}$)=sin(α+$\frac{π}{4}$)=sinα•$\frac{\sqrt{2}}{2}$+cosα$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$,
故选:D.

点评 本题主要考查同角三角的基本关系,两角和的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数y=f(x)(x∈R)d的导函数为f′(x),若f(x)-f(-x)=2x3,且当x≥0时,f′(x)>3x2,则不等式f(x)-f(x-1)>3x2-3x+1的解集是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,在等腰梯形ABCD中,AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点,现将梯形BEFC沿EF所在直线折起,使平面EFCB⊥平面EFDA,如图2所示,N是CD上一点,且$CN=\frac{1}{2}ND$.
(Ⅰ)求证:MN∥平面ADFE;
(Ⅱ)求三棱锥F-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个式子中是恒等式的是(  )
A.sin(α+β)=sinα+sinβB.cos(α+β)=cosαcosβ+sinβsinβ
C.tan(α+β)=$\frac{tanα-tanβ}{1-tanαtanβ}$D.sin(α+β)sin(α-β)=sin2α-sin2β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知:∠ABC=45°,AB=2,$BC=2\sqrt{2}$,SB=SC,直线SA与平面ABCD所成角为45°,O为BC的中点.
(1)证明:SA⊥BC
(2)求四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=1,an+1•an=2n(n∈N*),则S2016=(  )
A.22016-1B.3•21008-3C.3•21008-1D.3•21007-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到如图所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,
(Ⅰ)根据以上资料完成下面的2×2列联表,并估计用户对该公司的产品“满意”的概率;
不满意满意合计
47
合计
(Ⅱ) 根据列联表数据判断:能否在犯错的概率不超过5%的前提下,认为“满意与否”与“性别”有关?
附:
P(K2≥k)0.1000.0500.010
k2.7063.8416.635
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d
(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,E、F是正方形ABCD的边AB、BC的中点,将△ADE、△CDF、△BEF分别沿DE、DF、EF折起,使A、B、C三点重合于点A′.
(1)求证:A′D⊥EF;
(2)已知正方形ABCD的边长为a,求三棱锥A′-DEF的底面DEF上的高h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设i为虚数单位,则复数$\frac{1-i}{i}$的共轭复数所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案