精英家教网 > 高中数学 > 题目详情
10.如图1,在等腰梯形ABCD中,AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点,现将梯形BEFC沿EF所在直线折起,使平面EFCB⊥平面EFDA,如图2所示,N是CD上一点,且$CN=\frac{1}{2}ND$.
(Ⅰ)求证:MN∥平面ADFE;
(Ⅱ)求三棱锥F-AMN的体积.

分析 (I)取EF的中点P,连结MP,过点N作NQ∥CF交DF于点Q,连接PQ.利用中位线定理得出四边形MPQN是平行四边形,故MN∥PQ,于是MN∥平面ADFE;
(II)延长DA,FE,CB交于一点H,利用平行线等分线段成比例得出MN与DH的比值,得出△AMN与△CDH的面积比,则三棱锥F-AMN与三棱锥F-CDH的体积比等于其底面积的比.

解答 解:(Ⅰ)取EF的中点P,连结MP,过点N作NQ∥CF交DF于点Q,连接PQ.
则MP∥CE,$MP=\frac{BE+CF}{2}=2$.
$\frac{NQ}{CE}=\frac{DN}{CD}=\frac{2}{3}$,∴NQ=2,
∴MP$\stackrel{∥}{=}$NQ,
∴四边形MPQN是平行四边形
∴MN∥PQ,又PQ?平面ADFE,MN?平面ADFE,
∴MN∥平面ADFE.
(Ⅱ)延长DA,FE,CB交于一点H,
∵$\frac{BE}{BF}=\frac{AE}{DF}=\frac{1}{3}$,∴BE=$\frac{1}{2}EF=1$,
∴$\frac{FP}{FH}=\frac{1}{3}$,∵$\frac{FQ}{FD}=\frac{CN}{CD}=\frac{1}{3}$,∴PQ∥DH,且$\frac{PQ}{DH}=\frac{1}{3}$.
∵MN=PQ,MN∥PQ,∴MN$\stackrel{∥}{=}\frac{1}{3}DH$.
∴$\frac{{S}_{△MNA}}{{S}_{△CDH}}$=$\frac{2}{9}$,∴$\frac{{V}_{F-AMN}}{{V}_{F-CDH}}=\frac{2}{9}$.
∵${V_{F-CDH}}={V_{C-FDH}}=\frac{1}{3}×3×\frac{1}{2}×3×3=\frac{9}{2}$,
∴VF-AMN=1.

点评 本题考查了线面平行的判定,面面垂直的性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.双曲线3x2-y2=75上一点P到它的一个焦点的距离等于12,那么点P到它的另一个焦点的距离等于22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BC⊥AC,BC=AC=2,AA1=3D为AC的中点
(1)求证:AB1∥面BDC1
(2)求几何体B1-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图甲,边长为2的正方形ABCD中,点E,F分别是边AB和BC上的点.
(1)若点E是AB的中点,点F是BC的中点时,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A(如图乙),求证:A1D⊥EF;
(2)当BE=BF=$\frac{1}{4}$BC时,求三棱锥A1-EFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,各棱长均为2,D,E,F,G分别是棱AC,AA1,CC1,A1C1的中点.
(Ⅰ)求证:平面B1FG∥平面BDE;
(Ⅱ)求三棱锥B1-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四面体ABCD中,CD=CB,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面ABD⊥平面EFC;
(Ⅱ)当AD=CD=BD=1,且EF⊥CF时,求三棱锥C-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线y=ex+1在点(0,2)处的切线与直线y=0和x=0围成的三角形面积为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=sin(x+$\frac{π}{6}$),若sinα=$\frac{3}{5}$(0<α<$\frac{π}{2}}$),则f(α+$\frac{π}{12}}$)=(  )
A.$-\frac{{7\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{\sqrt{2}}}{10}$D.$\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}是等比数列,a1=1,a2=2,则a1a2+a2a3+…+anan+1=(  )
A.$\frac{2}{3}$(1-4-nB.$\frac{2}{3}$(1-2-nC.$\frac{2}{3}$(4n-1)D.2n+1-2

查看答案和解析>>

同步练习册答案