精英家教网 > 高中数学 > 题目详情
19.设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=(  )
A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}

分析 求出A与B的并集,然后求解补集即可.

解答 解:集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},
则A∪B={1,3,4,5}.
U(A∪B)={2,6}.
故选:A.

点评 本题考查集合的交、并、补的运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,则sin(x+y)=-$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(a,3),B(3,3a+3)两点间的距离是5,则a的值为-1或$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a∈R,函数f(x)=log2($\frac{1}{x}$+a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[$\frac{1}{2}$,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.6名学生中,3人只会独唱,3人只会跳舞,从6名学生中随机选取三人,则选取的这三名同学能排演一个由1人独唱,2人伴舞的节目的概率为(  )
A.$\frac{2}{5}$B.$\frac{9}{20}$C.$\frac{4}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.观察下列等式:
(sin$\frac{π}{3}$)-2+(sin$\frac{2π}{3}$)-2=$\frac{4}{3}$×1×2;
(sin$\frac{π}{5}$)-2+(sin$\frac{2π}{5}$)-2+(sin$\frac{3π}{5}$)-2+sin($\frac{4π}{5}$)-2=$\frac{4}{3}$×2×3;
(sin$\frac{π}{7}$)-2+(sin$\frac{2π}{7}$)-2+(sin$\frac{3π}{7}$)-2+…+sin($\frac{6π}{7}$)-2=$\frac{4}{3}$×3×4;
(sin$\frac{π}{9}$)-2+(sin$\frac{2π}{9}$)-2+(sin$\frac{3π}{9}$)-2+…+sin($\frac{8π}{9}$)-2=$\frac{4}{3}$×4×5;

照此规律,
(sin$\frac{π}{2n+1}$)-2+(sin$\frac{2π}{2n+1}$)-2+(sin$\frac{3π}{2n+1}$)-2+…+(sin$\frac{2nπ}{2n+1}$)-2=$\frac{4}{3}$n(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A(-2,0),圆C:x2-4x+y2-4y+4=0,过点A的直线l与圆C相交于两个不同的点P,Q,线段PQ的中点为M,O为坐标原点.
(1)求点M的轨迹方程;
(2)求|OM|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanα=2,则$\frac{1+2sinαcosα}{co{s}^{2}α-si{n}^{2}α}$的值等于(  )
A.$\frac{1}{3}$B.3C.-$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期(  )
A.与b有关,且与c有关B.与b有关,但与c无关
C.与b无关,且与c无关D.与b无关,但与c有关

查看答案和解析>>

同步练习册答案