分析 (1)当a=5时,解导数不等式即可.
(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.
(3)根据条件得到f(t)-f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.
解答 解:(1)当a=5时,f(x)=log2($\frac{1}{x}$+5),
由f(x)>0;得log2($\frac{1}{x}$+5)>0,
即$\frac{1}{x}$+5>1,则$\frac{1}{x}$>-4,则$\frac{1}{x}$+4=$\frac{4x+1}{x}$>0,即x>0或x<-$\frac{1}{4}$,
即不等式的解集为{x|x>0或x<-$\frac{1}{4}$}.
(2)由f(x)-log2[(a-4)x+2a-5]=0得log2($\frac{1}{x}$+a)-log2[(a-4)x+2a-5]=0.
即log2($\frac{1}{x}$+a)=log2[(a-4)x+2a-5],
即$\frac{1}{x}$+a=(a-4)x+2a-5>0,①
则(a-4)x2+(a-5)x-1=0,
即(x+1)[(a-4)x-1]=0,②,
当a=4时,方程②的解为x=-1,代入①,成立
当a=3时,方程②的解为x=-1,代入①,成立
当a≠4且a≠3时,方程②的解为x=-1或x=$\frac{1}{a-4}$,
若x=-1是方程①的解,则$\frac{1}{x}$+a=a-1>0,即a>1,
若x=$\frac{1}{a-4}$是方程①的解,则$\frac{1}{x}$+a=2a-4>0,即a>2,
则要使方程①有且仅有一个解,则1<a≤2.
综上,若方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4.
(3)函数f(x)在区间[t,t+1]上单调递减,
由题意得f(t)-f(t+1)≤1,
即log2($\frac{1}{t}$+a)-log2($\frac{1}{t+1}$+a)≤1,
即$\frac{1}{t}$+a≤2($\frac{1}{t+1}$+a),即a≥$\frac{1}{t}$-$\frac{2}{t+1}$=$\frac{1-t}{t(t+1)}$
设1-t=r,则0≤r≤$\frac{1}{2}$,
$\frac{1-t}{t(t+1)}$=$\frac{r}{(1-r)(2-r)}$=$\frac{r}{{r}^{2}-3r+2}$,
当r=0时,$\frac{r}{{r}^{2}-3r+2}$=0,
当0<r≤$\frac{1}{2}$时,$\frac{r}{{r}^{2}-3r+2}$=$\frac{1}{r+\frac{2}{r}-3}$,
∵y=r+$\frac{2}{r}$在(0,$\sqrt{2}$)上递减,
∴r+$\frac{2}{r}$≥$\frac{1}{2}+4$=$\frac{9}{2}$,
∴$\frac{r}{{r}^{2}-3r+2}$=$\frac{1}{r+\frac{2}{r}-3}$$≤\frac{1}{\frac{9}{2}-3}$=$\frac{2}{3}$,
∴实数a的取值范围是a≥$\frac{2}{3}$.
点评 本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,6} | B. | {3,6} | C. | {1,3,4,5} | D. | {1,2,4,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com