【题目】如图,三棱锥
中,
底面
为等边三角形,
分别是
的中点.
![]()
(1)证明:平面
平面
;
(2)如何在
上找一点
,使
平面
并说明理由;
(3)若
,对于(2)中的点
,求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
(
)的左右两个焦点分别是
、
,
在椭圆
上运动.
(1)若对
有最大值为120°,求出
、
的关系式;
(2)若点
是在椭圆上位于第一象限的点,过点
作直线
的垂线
,过
作直线
的垂线
,若直线
、
的交点
在椭圆
上,求点
的坐标;
(3)若设
,在(2)成立的条件下,试求出
、
两点间距离的函数
,并求出
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
的前
项1,3,7,
,
(
)组成集合
,从集合
中任取
(
)个数,其所有可能的
个数的乘积的和为
(若只取一个数,规定乘积为此数本身),记
.例如:当
时,
,
,
;
时,
,
,
,
.
(1)当
时,求
,
,
,
的值;
(2)证明:
时集合
的
与
时集合
的
(为以示区别,用
表示)有关系式
(
,
);
(3)试求
(用
表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产
千件,需另投入成本
,当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1、F2为双曲线
(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°,圆O的方程是x2+y2=b2.
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求
的值;
(3)过圆O上任意一点Q作圆O的切线l交双曲线C于A、B两点,AB中点为M,求证:|AB|=2|OM|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)所示,五边形
中,
,
,
分别是线段
的中点,且
,现沿
翻折,使得
,得到的图形如图(2)所示.
![]()
图(1) 图(2)
(1)证明:
平面
;
(2)若平面
与平面
所成角的平面角的余弦值为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com