精英家教网 > 高中数学 > 题目详情
3.试求函数f(x)=-x2+2ax-3在[1,3]上的最大值g(a).

分析 将f(x)配方,所以对称轴是x=a,所以讨论对称轴x=a和区间[1,3]的关系:有三种关系:(1)对称轴在区间的右边,(2)对称轴在区间上,(3)对称轴在区间左边,根据二次函数的单调性及顶点求出每种情况下的f(x)的最大值,最小值即可.

解答 解:f(x)=-x2+2ax-3=-(x-a)2-3+a2
①若a≥3,则函数f(x)在[1,3]上单调递增,
所以:f(x)的最大值为g(a)=f(3)=6a-12,
②若1<a<3,f(x)的最大值为g(a)=f(a)=a2-3,
③若a≤1,则f(x)在[1,3]上单调递减,
所以:f(x)的最大值为g(a)=f(1)=2a-4,
综上:g(a)=$\left\{\begin{array}{l}{6a-12,(a≥3)}\\{{a}^{2}-3,(1<a<3)}\\{2a-4,(a≤1)}\end{array}\right.$.

点评 考查根据二次函数的单调性及取得顶点的情况求二次函数最值的方法,以及二次函数单调性和对称轴的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=ax2+bx+c(a≠0)
(1)若不等式f(x)<0的解集为(-∞,-2)∪(3,+∞),求不等式cx2+bx+a>0的解集;
(2)若函数f(x)的图象与|y|=|x|的图象没有公共点,求证:?x∈R,都有|f(x)|>$\frac{1}{4|a|}$;
(3)若当-1≤x≤1时,都有-1≤f(x)≤1,求证:当-2≤x≤2时,都有-7≤f(x)≤7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线y2=8x上一点P(x0,y0)到原点的距离与到准线的距离相等,则x0=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过原点的直线与圆x2+y2-4x+3=0相切,若切点在第四象限,则该直线方程为(  )
A.y=$-\sqrt{3}$xB.y=$\frac{{\sqrt{3}}}{3}$xC.y=$-\frac{{\sqrt{3}}}{3}$xD.y=$\sqrt{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求二次函数在给定区间的最值:
(1)y=x2,t≤x≤t+1
(2)y=x2-2mx,-1≤x≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b是两条直线,α,β是两个平面,则下列推导正确的是(  )
A.a?α,α⊥β,b⊥β⇒a⊥bB.a⊥α,b⊥β,α∥β⇒a⊥bC.a⊥α,α∥β,b∥β⇒a⊥bD.a⊥α,α⊥β,b∥β⇒a⊥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a、b、c是空间三条直线,下面给出四个命题:
①若a⊥b,b⊥c,则a∥c;
②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;
③若a和b相交,b和c相交,则a和c也相交;
④若a和b共面,b和c共面,则a和c也共面.
其中真命题的个数是(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求证:不论m取什么实数,方程x2-(m2+m)x+m-2=0必有两个不相等的实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A={x|x具有性质p},B={x|x具有性质q},c={x|x具有性质r},集台A,B,C之间的关系如图所示:(注:每-个集合均是一个圆及其内部)
(1)p是q的什么条件?
(2)q是r的什么条件?
(3)r是p的什么条件?

查看答案和解析>>

同步练习册答案