精英家教网 > 高中数学 > 题目详情
19.设Sn为等差数列{an}的前n项和,且4Sn=n(an+an+1),a5=9.
(1)求{an}的通项公式;
(2)设区间(an•2n,an+1•2n+1)内整数的个数为bn,令cn=$\frac{{b}_{n}-{2}^{n+2}+1}{{4}^{n}}$,若{cn}的前n项和为Tn,求证:Tn<3.

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)区间(an•2n,an+1•2n+1)即区间((2n-1)•2n,(2n+1)•2n+1),可得bn=(2n+3)•2n-1,cn=$\frac{2n-1}{{2}^{n}}$,再利用“错位相减法”、等比数列的前n项和公式即可得出.

解答 (1)解:设等差数列{an}的公差为d,
∵4Sn=n(an+an+1),
∴$4×\frac{n({a}_{1}+{a}_{n})}{2}$=n(an+an+1),
化为2a1=d,
又a5=9,∴a1+4d=9,
联立$\left\{\begin{array}{l}{2{a}_{1}=d}\\{{a}_{1}+4d=9}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$.
∴an=1+2(n-1)=2n-1,
∴an=2n-1.
(2)证明:区间(an•2n,an+1•2n+1)即区间((2n-1)•2n,(2n+1)•2n+1),
∴bn=(2n+3)•2n-1,
∴cn=$\frac{{b}_{n}-{2}^{n+2}+1}{{4}^{n}}$=$\frac{2n-1}{{2}^{n}}$,
∴{cn}的前n项和为Tn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n-1}}$+$\frac{2n-1}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{2}{{2}^{n}}$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{1}{2}+\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-$\frac{1}{2}$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{2n+1}{{2}^{n+1}}$,
∴Tn=$3-\frac{2n+1}{{2}^{n}}$.
∴Tn<3.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.三棱柱ABC-A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为AB边中点,且CC1=2AB.
(1)求证:平面C1CD⊥平面ABC;
(2)求证:AC1∥平面CDB1
(3)求三棱锥D-CAB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,离心率为$\frac{\sqrt{3}}{3}$,过点F且与x轴垂直的直线被椭圆截得的线段长为$\frac{4\sqrt{3}}{3}$.
(1)求椭圆C的方程;
(2)直线l:y=kx+t(k≠0)与椭圆C交于M、N两点,线段MN的垂直平分线与y轴交点P(0,-$\frac{1}{4}$),求△MON(O为坐标原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,直线AC的解析式为y=kx-3,且tan∠ACO=$\frac{1}{3}$.
(1)如图1,求抛物线的解析式;
(2)如图2,点P是x轴负半轴上一动点,连接PC、BC和BD,当∠OPC=2∠CBD时,求点P的坐标;
(3)如图3,在(2)的条件下,延长AC和BD相交于点E,点Q是抛物线上的一动点(点Q在第四象限且在对称轴右侧),连接PQ交AC于点F,交y轴于点G,交BE于点H,当∠PFA=45°,求点Q的坐标,并直接写出BG和OQ之间的数量关系和位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利润30元
(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式
(2)商店记录了50天该商品的日需求量n(单位:件)整理得表:
 日需求量 8 1011  12
 频数 1115  10
若商店一天购进10件该商品,以50天记录的各需求量发生的概率,求当天的利润在区间[400,500]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(a+x)-ln(a-x)(a>0)
(Ⅰ)曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,求a的值;
(Ⅱ)当x≥0时,不等式f(x)≥2x+$\frac{2{x}^{3}}{3}$恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,CD是圆O的切线,切点为C,BC=2$\sqrt{3}$,点B在圆上,∠BCD=60°,则圆的面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1)不等式t<e1+e2恒成立,则t的最大值为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,直三棱柱ABC一A1B1C1中,AB=$\sqrt{2}$,AC=3,BC=$\sqrt{5}$,D是ACl的中点,E是侧棱BB1上的一个动点
(1)当E是BB1的中点时,证明:DE∥平面A1B1C1
(2)在棱BB1上是否存在点E使平面AC1E⊥平面AC1C?若存在,求出$\frac{BE}{{B{B_1}}}$的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案