精英家教网 > 高中数学 > 题目详情
11.如图,CD是圆O的切线,切点为C,BC=2$\sqrt{3}$,点B在圆上,∠BCD=60°,则圆的面积为4π.

分析 通过弦切角,求出圆心角,结合弦长,得到半径,然后求出圆的面积.

解答 解:∵弦切角等于同弧上的圆周角,∠BCD=60°,
∴∠BOC=120°,
∵BC=2$\sqrt{3}$,
∴圆的半径为:$\frac{\sqrt{3}}{cos30°}$=2,
∴圆的面积为:π•22=4π.
故答案为:4π.

点评 本题是基础题,考查弦切角的应用,圆周角与圆心角的关系,确定面积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.三棱锥的三条侧棱两两垂直其长度为abc体积为$\frac{1}{6}abc$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F(-c,0),点D(0,b),直线DF的斜率为$\sqrt{3}$.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设过点F的直线交椭圆于A,B两点,过点P(-4c,0)作与直线AB的倾斜角互补的直线l,交椭圆C于M,N两点,问:$\frac{|FA|•|FB|}{|PM|•|PN|}$是否为定值,若是,求出此定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设Sn为等差数列{an}的前n项和,且4Sn=n(an+an+1),a5=9.
(1)求{an}的通项公式;
(2)设区间(an•2n,an+1•2n+1)内整数的个数为bn,令cn=$\frac{{b}_{n}-{2}^{n+2}+1}{{4}^{n}}$,若{cn}的前n项和为Tn,求证:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图所示的几何体中,已知△BCD是等腰直角三角形且BD=CD,AB=BC=AC=2,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC.
(1)证明:AE∥平面BCD;
(2)证明:平面BDE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{a}$=(3,x),$\overrightarrow{b}$=(9,12),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等轴双曲线C与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有相同的焦点,则双曲线C的方程为(  )
A.2x2-2y2=1B.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1C.x2-y2=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分割为 F1,F2,左右端点分别为曲 A1,A2,抛物线 y2=4x与椭圆相交于A,B两点且其焦点与 F2重合,AF2=$\frac{5}{3}$
(Ⅰ)求椭圆的方程;
(Ⅱ)过点 $(\frac{2}{7},0)$作直线 l与椭圆相交于P,Q两点(不与 A1,A2重合),求 $\overrightarrow{{A_2}P}$与 $\overrightarrow{{A_2}Q}$夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(1)求实数a的值;
(2)若存在x0>1,满足f(x0)-k(x0-1)<0,求整数k的最大值.

查看答案和解析>>

同步练习册答案