2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¨-c£¬0£©£¬µãD£¨0£¬b£©£¬Ö±ÏßDFµÄбÂÊΪ$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©Éè¹ýµãFµÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬¹ýµãP£¨-4c£¬0£©×÷ÓëÖ±ÏßABµÄÇãб½Ç»¥²¹µÄÖ±Ïßl£¬½»ÍÖÔ²CÓÚM£¬NÁ½µã£¬ÎÊ£º$\frac{|FA|•|FB|}{|PM|•|PN|}$ÊÇ·ñΪ¶¨Öµ£¬ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½ºÍÀëÐÄÂʹ«Ê½£¬½áºÏa£¬b£¬cµÄ¹ØÏµ£¬¼´¿ÉµÃµ½£»
£¨¢ò£©ÉèÖ±ÏßAB£ºx=ty-c£¬Ö±ÏßMN£ºx=-ty-4c£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬½«Ö±Ïß·½³Ì·Ö±ð´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ£¬kDF=$\frac{b}{c}$=$\sqrt{3}$£¬a=$\sqrt{{b}^{2}+{c}^{2}}$=2c£¬
ÔòÍÖÔ²µÄÀëÐÄÂÊΪe=$\frac{c}{a}$=$\frac{1}{2}$£»
£¨¢ò£©ÉèÖ±ÏßAB£ºx=ty-c£¬Ö±ÏßMN£ºx=-ty-4c£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
½«Ö±Ïßx=ty-c´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{4{c}^{2}}$+$\frac{{y}^{2}}{3{c}^{2}}$=1£¬¿ÉµÃ
£¨3t2+4£©y2-6tcy-9c2=0£¬
Ôòy1y2=-$\frac{9{c}^{2}}{3{t}^{2}+4}$£¬
ÔÙ½«Ö±Ïßx=-ty-4c´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{4{c}^{2}}$+$\frac{{y}^{2}}{3{c}^{2}}$=1£¬¿ÉµÃ
£¨3t2+4£©y2+24tcy+36c2=0£¬
Ôòy3y4=$\frac{36{c}^{2}}{3{c}^{2}+4}$£¬
¼´ÓÐ$\frac{|FA|•|FB|}{|PM|•|PN|}$=$\frac{\sqrt{1+{t}^{2}}|{y}_{1}|•\sqrt{1+{t}^{2}}|{y}_{2}|}{\sqrt{1+£¨-t£©^{2}}|{y}_{3}|•\sqrt{1+£¨-t£©^{2}}|{y}_{4}|}$
=$\frac{|{y}_{1}{y}_{2}|}{|{y}_{3}{y}_{4}|}$=$\frac{\frac{9{c}^{2}}{3{t}^{2}+4}}{\frac{36{c}^{2}}{3{t}^{2}+4}}$=$\frac{1}{4}$£®
¹Ê$\frac{|FA|•|FB|}{|PM|•|PN|}$Ϊ¶¨Öµ$\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷ÒªÊÇÀëÐÄÂʵÄÔËÓã¬Í¬Ê±¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°Á½µãµÄ¾àÀ빫ʽµÄÔËÓã¬ÕýÈ·Éè³öÖ±Ïß·½³ÌÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Çóº¯Êýf£¨x£©=lg£¨2cosx+1£©+$\sqrt{sinx}$µÄ¶¨ÒåÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÒ»¸ö½¹µãΪF£¨$\sqrt{2}$£¬0£©£¬ÇÒ¹ýµã£¨2£¬0£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÍÖÔ²CÉÏÒ»¶¯µã£®P£¨x0£¬y0£©¹ØÓÚÖ±Ïßy=2xµÄ¶Ô³ÆµãΪP1£¨x1£¬y1£©£®Çó3x1-4y1µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£¬¹ýµãFÇÒÓëxÖá´¹Ö±µÄÖ±Ïß±»ÍÖÔ²½ØµÃµÄÏ߶γ¤Îª$\frac{4\sqrt{3}}{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±Ïßl£ºy=kx+t£¨k¡Ù0£©ÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬Ïß¶ÎMNµÄ´¹Ö±Æ½·ÖÏßÓëyÖá½»µãP£¨0£¬-$\frac{1}{4}$£©£¬Çó¡÷MON£¨OÎª×ø±êÔ­µã£©Ãæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊǾØÐΣ¬Æ½ÃæPAD¡ÍÆ½ÃæABCD£¬PD¡ÍPB£¬PA=PD£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæPCD¡ÍÆ½ÃæPAB£»
£¨¢ò£©ÉèEÊÇÀâABµÄÖе㣬¡ÏPEC=90¡ã£¬AB=2£¬Çó¶þÃæ½ÇE-PC-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÎª×ø±êÔ­µã£¬Å×ÎïÏßy=x2+bx+cÓëxÖá½»ÓÚµãAºÍµãB£¨µãAÔÚµãBµÄ×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏߵĶ¥µãΪD£¬Ö±ÏßACµÄ½âÎöʽΪy=kx-3£¬ÇÒtan¡ÏACO=$\frac{1}{3}$£®
£¨1£©Èçͼ1£¬ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ2£¬µãPÊÇxÖḺ°ëÖáÉÏÒ»¶¯µã£¬Á¬½ÓPC¡¢BCºÍBD£¬µ±¡ÏOPC=2¡ÏCBDʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Èçͼ3£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÑÓ³¤ACºÍBDÏཻÓÚµãE£¬µãQÊÇÅ×ÎïÏßÉϵÄÒ»¶¯µã£¨µãQÔÚµÚËÄÏóÏÞÇÒÔÚ¶Ô³ÆÖáÓҲࣩ£¬Á¬½ÓPQ½»ACÓÚµãF£¬½»yÖáÓÚµãG£¬½»BEÓÚµãH£¬µ±¡ÏPFA=45¡ã£¬ÇóµãQµÄ×ø±ê£¬²¢Ö±½Óд³öBGºÍOQÖ®¼äµÄÊýÁ¿¹ØÏµºÍλÖùØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³ÉÌµê¼Æ»®Ã¿Ì칺½øÄ³ÉÌÆ·Èô¸É¼þ£¬É̵êÿÏúÊÛÒ»¼þ¸ÃÉÌÆ·¿É»ñÀûÈó50Ôª£¬Èô¹©´óÓÚÇó£¬Ê£ÓàÉÌÆ·È«²¿Í˻أ¬µ«Ã¿¼þÉÌÆ·¿÷Ëð10Ôª£»Èô¹©²»Ó¦Çó£¬Ôò´ÓÍⲿµ÷¼Á£¬´Ëʱÿ¼þµ÷¼ÁÉÌÆ·¿É»ñÀûÈó30Ôª
£¨1£©ÈôÉ̵êÒ»Ì칺½ø¸ÃÉÌÆ·10¼þ£¬Çóµ±ÌìµÄÀûÈóy£¨µ¥Î»£ºÔª£©¹ØÓÚµ±ÌìÐèÇóÁ¿n£¨µ¥Î»£º¼þ£¬n¡ÊN£©µÄº¯Êý½âÎöʽ
£¨2£©É̵ê¼Ç¼ÁË50Ìì¸ÃÉÌÆ·µÄÈÕÐèÇóÁ¿n£¨µ¥Î»£º¼þ£©ÕûÀíµÃ±í£º
 ÈÕÐèÇóÁ¿ 8 1011  12
 ÆµÊý 1115  10
ÈôÉ̵êÒ»Ì칺½ø10¼þ¸ÃÉÌÆ·£¬ÒÔ50Ìì¼Ç¼µÄ¸÷ÐèÇóÁ¿·¢ÉúµÄ¸ÅÂÊ£¬Çóµ±ÌìµÄÀûÈóÔÚÇø¼ä[400£¬500]µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬CDÊÇÔ²OµÄÇÐÏߣ¬ÇеãΪC£¬BC=2$\sqrt{3}$£¬µãBÔÚÔ²ÉÏ£¬¡ÏBCD=60¡ã£¬ÔòÔ²µÄÃæ»ýΪ4¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¼¯ºÏA={x|3x-x2£¾0}£¬B={0£¬1£¬2£¬3}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
A£®{0£¬1}B£®{1£¬2}C£®{1£¬2£¬3}D£®{0£¬1£¬2£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸