·ÖÎö £¨1£©ÓÉÌõ¼þÇóµÃµãAºÍµãCµÄ×ø±ê£¬ÔÙ°ÑËüÃÇ´úÈëÅ×ÎïÏߵķ½³ÌÇó³öb¡¢cµÄÖµ£¬¿ÉµÃÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©ÉèP£¨x0£¬0£©£¬x0£¼0£¬ÓÉÌõ¼þÇóµÃtan¡ÏOPC=$\frac{3}{{-x}_{0}}$£»ÀûÓÃÁ½¸öÏòÁ¿µÄ¼Ð½Ç¹«Ê½ÇóµÃcos£¼$\overrightarrow{BC}$£¬$\overrightarrow{BD}$£¾µÄÖµ£¬¿ÉµÃtan£¼$\overrightarrow{BC}$£¬$\overrightarrow{BD}$£¾µÄÖµ£¬½áºÏ¡ÏOPC=2¡ÏCBDÀûÓöþ±¶½ÇµÄÕýÇй«Ê½ÇóµÃx0µÄÖµ£¬¿ÉµÃµãPµÄ×ø±ê£®
£¨3£©ÉèQ£¨x1£¬${{x}_{1}}^{2}$-2x1-3£©£¬1¡Üx1¡Ü3£®ÇóµÃPQ¡¢ACµÄ·½³Ì£¬ÔÙÇóµÃtan¡ÏPAF=$\frac{{k}_{FP}{-k}_{FA}}{1{+k}_{FP}{•k}_{FA}}$µÄÖµ£¬¿ÉµÃFµÄ×ø±ê£¬ÔÙ¸ù¾ÝFÔÚÖ±ÏßPQÉÏ£¬ÇóµÃQµãµÄ×ø±ê£¬´Ó¶øµÃ³ö½áÂÛ£®
½â´ð
½â£º£¨1£©Èçͼ1£¬¡ßÖ±ÏßACµÄ½âÎöʽΪy=kx-3£¬
Áîx=0£¬µÃy=-3£¬¡àC£¨0£¬-3£©£®
ÓÖ¡ßtan¡ÏACO=$\frac{1}{3}$£¬¡àA£¨-1£¬0£©£®
¡à$\left\{\begin{array}{l}{c=-3}\\{{£¨-1£©}^{2}+b¡Á£¨-1£©+c=0}\end{array}\right.$£¬
½âµÃb=-2£¬c=-3£¬
¡àÅ×ÎïÏßy=x2-2x-3£®
£¨2£©Èçͼ2£¬¡ßµãPÊÇxÖḺ°ëÖáÉÏÒ»¶¯µã£¬
¡àÉèP£¨x0£¬0£©£¬x0£¼0£»
ÇÒC£¨0£¬-3£©£¬B£¨3£¬0£©£¬D£¨1£¬-4£©£®
ÔÚRt¡÷POCÖУ¬tan¡ÏOPC=$\frac{3}{{-x}_{0}}$=-$\frac{3}{{x}_{0}}$£®
¡ß$\overrightarrow{BC}$=£¨-3£¬-3£©£¬$\overrightarrow{BD}$=£¨-2£¬-4£©£¬
¡àcos£¼$\overrightarrow{BC}$£¬$\overrightarrow{BD}$£¾=$\frac{\overrightarrow{BC}•\overrightarrow{BD}}{|\overrightarrow{BC}|¡Á|\overrightarrow{BD}|}$=$\frac{-3¡Á£¨-2£©-3¡Á£¨-4£©}{\sqrt{{£¨-3£©}^{2}{+£¨-3£©}^{2}}¡Á\sqrt{{£¨-2£©}^{2}{+£¨-4£©}^{2}}}$=$\frac{3}{\sqrt{10}}$£¬
¼´cos¡ÏCBD=$\frac{3}{\sqrt{10}}$£¬¡àsin¡ÏCBD=$\frac{1}{\sqrt{10}}$£¬¡àtan¡ÏCBD=$\frac{1}{3}$£®
ÓÖ¡ß¡ÏOPC=2¡ÏCBD£¬tan2¡ÏCBD=$\frac{2tan¡ÏCBD}{1{-tan}^{2}¡ÏCBD}$=$\frac{2¡Á\frac{1}{3}}{1{-£¨\frac{1}{3}£©}^{2}}$=$\frac{3}{4}$£¬
¼´tan¡ÏCBD=$\frac{3}{4}$£¬¡à-$\frac{3}{{x}_{0}}$=$\frac{3}{4}$£¬½âµÃx0=-4£¬¡àµãPµÄ×ø±êΪP£¨-4£¬0£©£®![]()
£¨3£©Èçͼ3Ëùʾ£º![]()
¡ßµãQÊÇÅ×ÎïÏßy=x2-2x-3ÉϵÄÒ»¶¯µã£¨µãQÔÚµÚËÄÏóÏÞÇÒÔÚ¶Ô³ÆÖáÓҲࣩ£¬
¡àÉèQ£¨x1£¬${{x}_{1}}^{2}$-2x1-3£©£¬1¡Üx1¡Ü3£®
¡àÖ±ÏßPQµÄ·½³ÌΪ$\frac{x+4}{{x}_{1}+4}$=$\frac{y}{{{x}_{1}}^{2}-2{x}_{1}-3}$¢Ù£¬Ö±ÏßACµÄ·½³ÌΪy=-3x-3¢Ú£®
ÔÙÉèµãF£¨t£¬-3t-3£©£¬¡ßkFA=-3£¬kFP=$\frac{3t+3}{-4-t}$£¬
¡àtan¡ÏPAF=$\frac{{k}_{FP}{-k}_{FA}}{1{+k}_{FP}{•k}_{FA}}$=$\frac{\frac{3t+3}{-4-t}+3}{1+\frac{3t+3}{-4-t}•£¨-3£©}$=1£¬
½âµÃt=-$\frac{2}{5}$£¬¡àF£¨-$\frac{2}{5}$£¬-$\frac{9}{5}$£©£®
µãFÔÚÖ±ÏßPQÉÏ£¬¡à$\frac{-\frac{2}{5}+4}{{x}_{1}+4}$=$\frac{-\frac{9}{5}}{{{x}_{1}}^{2}{-x}_{1}-3}$£¬
¼´2${{x}_{1}}^{2}$-x1-2=0£¬½âµÃx1=$\frac{1+\sqrt{17}}{4}$£¬»òx1=$\frac{1-\sqrt{17}}{4}$£¨ÉáÈ¥£©£®
¡ày1=${{£¨x}_{1}-1£©}^{2}$-4=${£¨\frac{1+\sqrt{17}}{4}-1£©}^{2}$-4=-$\frac{19+3\sqrt{17}}{8}$£¬
¡àµãQµÄ×ø±êΪ£¨$\frac{1+\sqrt{17}}{4}$£¬-$\frac{19+3\sqrt{17}}{8}$£©£®
¸ù¾ÝP£¨-4£¬0£©£¬ÓÃÁ½µãʽÇóµÃPQµÄ·½³ÌΪy=-$\frac{£¨19+\sqrt{37}£©}{34+2\sqrt{17}}$x-$\frac{76+12\sqrt{17}}{34+2\sqrt{17}}$£¬
¹ÊµãGµÄ×ø±êΪ£¨0£¬-$\frac{76+12\sqrt{17}}{34+2\sqrt{17}}$£©£¬
²¢Ö±½Óд³öBGºÍOQÏཻ£¬ÇÒBG=$\sqrt{{3}^{2}{+£¨\frac{76+12\sqrt{17}}{34+2\sqrt{17}}£©}^{2}}$£¬OQ=$\sqrt{{£¨\frac{1+\sqrt{17}}{4}£©}^{2}{+£¨\frac{19+3\sqrt{17}}{8}£©}^{2}}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬Ö±ÏßµÄбÂʹ«Ê½¡¢¶þ±¶½ÇµÄÕýÇй«Ê½µÄÓ¦Óã¬ÌåÏÖÁËת»¯¡¢ÊýÐνáºÏµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬$\frac{3}{4}$] | B£® | [0£¬$\frac{3}{4}$] | C£® | [0£¬1£© | D£® | [0£¬1] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com