7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÎª×ø±êÔ­µã£¬Å×ÎïÏßy=x2+bx+cÓëxÖá½»ÓÚµãAºÍµãB£¨µãAÔÚµãBµÄ×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏߵĶ¥µãΪD£¬Ö±ÏßACµÄ½âÎöʽΪy=kx-3£¬ÇÒtan¡ÏACO=$\frac{1}{3}$£®
£¨1£©Èçͼ1£¬ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ2£¬µãPÊÇxÖḺ°ëÖáÉÏÒ»¶¯µã£¬Á¬½ÓPC¡¢BCºÍBD£¬µ±¡ÏOPC=2¡ÏCBDʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Èçͼ3£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÑÓ³¤ACºÍBDÏཻÓÚµãE£¬µãQÊÇÅ×ÎïÏßÉϵÄÒ»¶¯µã£¨µãQÔÚµÚËÄÏóÏÞÇÒÔÚ¶Ô³ÆÖáÓҲࣩ£¬Á¬½ÓPQ½»ACÓÚµãF£¬½»yÖáÓÚµãG£¬½»BEÓÚµãH£¬µ±¡ÏPFA=45¡ã£¬ÇóµãQµÄ×ø±ê£¬²¢Ö±½Óд³öBGºÍOQÖ®¼äµÄÊýÁ¿¹ØÏµºÍλÖùØÏµ£®

·ÖÎö £¨1£©ÓÉÌõ¼þÇóµÃµãAºÍµãCµÄ×ø±ê£¬ÔÙ°ÑËüÃÇ´úÈëÅ×ÎïÏߵķ½³ÌÇó³öb¡¢cµÄÖµ£¬¿ÉµÃÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©ÉèP£¨x0£¬0£©£¬x0£¼0£¬ÓÉÌõ¼þÇóµÃtan¡ÏOPC=$\frac{3}{{-x}_{0}}$£»ÀûÓÃÁ½¸öÏòÁ¿µÄ¼Ð½Ç¹«Ê½ÇóµÃcos£¼$\overrightarrow{BC}$£¬$\overrightarrow{BD}$£¾µÄÖµ£¬¿ÉµÃtan£¼$\overrightarrow{BC}$£¬$\overrightarrow{BD}$£¾µÄÖµ£¬½áºÏ¡ÏOPC=2¡ÏCBDÀûÓöþ±¶½ÇµÄÕýÇй«Ê½ÇóµÃx0µÄÖµ£¬¿ÉµÃµãPµÄ×ø±ê£®
£¨3£©ÉèQ£¨x1£¬${{x}_{1}}^{2}$-2x1-3£©£¬1¡Üx1¡Ü3£®ÇóµÃPQ¡¢ACµÄ·½³Ì£¬ÔÙÇóµÃtan¡ÏPAF=$\frac{{k}_{FP}{-k}_{FA}}{1{+k}_{FP}{•k}_{FA}}$µÄÖµ£¬¿ÉµÃFµÄ×ø±ê£¬ÔÙ¸ù¾ÝFÔÚÖ±ÏßPQÉÏ£¬ÇóµÃQµãµÄ×ø±ê£¬´Ó¶øµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©Èçͼ1£¬¡ßÖ±ÏßACµÄ½âÎöʽΪy=kx-3£¬
Áîx=0£¬µÃy=-3£¬¡àC£¨0£¬-3£©£®
ÓÖ¡ßtan¡ÏACO=$\frac{1}{3}$£¬¡àA£¨-1£¬0£©£®
¡à$\left\{\begin{array}{l}{c=-3}\\{{£¨-1£©}^{2}+b¡Á£¨-1£©+c=0}\end{array}\right.$£¬
½âµÃb=-2£¬c=-3£¬
¡àÅ×ÎïÏßy=x2-2x-3£®
£¨2£©Èçͼ2£¬¡ßµãPÊÇxÖḺ°ëÖáÉÏÒ»¶¯µã£¬
¡àÉèP£¨x0£¬0£©£¬x0£¼0£»
ÇÒC£¨0£¬-3£©£¬B£¨3£¬0£©£¬D£¨1£¬-4£©£®
ÔÚRt¡÷POCÖУ¬tan¡ÏOPC=$\frac{3}{{-x}_{0}}$=-$\frac{3}{{x}_{0}}$£®
¡ß$\overrightarrow{BC}$=£¨-3£¬-3£©£¬$\overrightarrow{BD}$=£¨-2£¬-4£©£¬
¡àcos£¼$\overrightarrow{BC}$£¬$\overrightarrow{BD}$£¾=$\frac{\overrightarrow{BC}•\overrightarrow{BD}}{|\overrightarrow{BC}|¡Á|\overrightarrow{BD}|}$=$\frac{-3¡Á£¨-2£©-3¡Á£¨-4£©}{\sqrt{{£¨-3£©}^{2}{+£¨-3£©}^{2}}¡Á\sqrt{{£¨-2£©}^{2}{+£¨-4£©}^{2}}}$=$\frac{3}{\sqrt{10}}$£¬
¼´cos¡ÏCBD=$\frac{3}{\sqrt{10}}$£¬¡àsin¡ÏCBD=$\frac{1}{\sqrt{10}}$£¬¡àtan¡ÏCBD=$\frac{1}{3}$£®
ÓÖ¡ß¡ÏOPC=2¡ÏCBD£¬tan2¡ÏCBD=$\frac{2tan¡ÏCBD}{1{-tan}^{2}¡ÏCBD}$=$\frac{2¡Á\frac{1}{3}}{1{-£¨\frac{1}{3}£©}^{2}}$=$\frac{3}{4}$£¬
¼´tan¡ÏCBD=$\frac{3}{4}$£¬¡à-$\frac{3}{{x}_{0}}$=$\frac{3}{4}$£¬½âµÃx0=-4£¬¡àµãPµÄ×ø±êΪP£¨-4£¬0£©£®


£¨3£©Èçͼ3Ëùʾ£º

¡ßµãQÊÇÅ×ÎïÏßy=x2-2x-3ÉϵÄÒ»¶¯µã£¨µãQÔÚµÚËÄÏóÏÞÇÒÔÚ¶Ô³ÆÖáÓҲࣩ£¬
¡àÉèQ£¨x1£¬${{x}_{1}}^{2}$-2x1-3£©£¬1¡Üx1¡Ü3£®
¡àÖ±ÏßPQµÄ·½³ÌΪ$\frac{x+4}{{x}_{1}+4}$=$\frac{y}{{{x}_{1}}^{2}-2{x}_{1}-3}$¢Ù£¬Ö±ÏßACµÄ·½³ÌΪy=-3x-3¢Ú£®
ÔÙÉèµãF£¨t£¬-3t-3£©£¬¡ßkFA=-3£¬kFP=$\frac{3t+3}{-4-t}$£¬
¡àtan¡ÏPAF=$\frac{{k}_{FP}{-k}_{FA}}{1{+k}_{FP}{•k}_{FA}}$=$\frac{\frac{3t+3}{-4-t}+3}{1+\frac{3t+3}{-4-t}•£¨-3£©}$=1£¬
½âµÃt=-$\frac{2}{5}$£¬¡àF£¨-$\frac{2}{5}$£¬-$\frac{9}{5}$£©£®
µãFÔÚÖ±ÏßPQÉÏ£¬¡à$\frac{-\frac{2}{5}+4}{{x}_{1}+4}$=$\frac{-\frac{9}{5}}{{{x}_{1}}^{2}{-x}_{1}-3}$£¬
¼´2${{x}_{1}}^{2}$-x1-2=0£¬½âµÃx1=$\frac{1+\sqrt{17}}{4}$£¬»òx1=$\frac{1-\sqrt{17}}{4}$£¨ÉáÈ¥£©£®
¡ày1=${{£¨x}_{1}-1£©}^{2}$-4=${£¨\frac{1+\sqrt{17}}{4}-1£©}^{2}$-4=-$\frac{19+3\sqrt{17}}{8}$£¬
¡àµãQµÄ×ø±êΪ£¨$\frac{1+\sqrt{17}}{4}$£¬-$\frac{19+3\sqrt{17}}{8}$£©£®
¸ù¾ÝP£¨-4£¬0£©£¬ÓÃÁ½µãʽÇóµÃPQµÄ·½³ÌΪy=-$\frac{£¨19+\sqrt{37}£©}{34+2\sqrt{17}}$x-$\frac{76+12\sqrt{17}}{34+2\sqrt{17}}$£¬
¹ÊµãGµÄ×ø±êΪ£¨0£¬-$\frac{76+12\sqrt{17}}{34+2\sqrt{17}}$£©£¬
²¢Ö±½Óд³öBGºÍOQÏཻ£¬ÇÒBG=$\sqrt{{3}^{2}{+£¨\frac{76+12\sqrt{17}}{34+2\sqrt{17}}£©}^{2}}$£¬OQ=$\sqrt{{£¨\frac{1+\sqrt{17}}{4}£©}^{2}{+£¨\frac{19+3\sqrt{17}}{8}£©}^{2}}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬Ö±ÏßµÄбÂʹ«Ê½¡¢¶þ±¶½ÇµÄÕýÇй«Ê½µÄÓ¦Óã¬ÌåÏÖÁËת»¯¡¢ÊýÐνáºÏµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÓÐ3±¾²»Í¬µÄÊýѧÊ飬2±¾²»Í¬µÄÎïÀíÊ飬3±¾²»Í¬µÄ»¯Ñ§Ê飬ȫ²¿ÊúÆðÅųÉÒ»ÅÅ£¬ÈôÒªÇóÊýѧÊ黥²»ÏàÁÚ£¬Í¬Ê±ÎïÀíÊéÒ²»¥²»ÏàÁÚ£¬ÓжàÉÙÖÖÅÅ·¨£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=ex-m-x£¬ÆäÖÐmΪ³£Êý£®
£¨1£©Èô¶ÔÈÎÒâx¡ÊRÓÐf£¨x£©¡Ý0³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£»
£¨2£©µ±m£¾1ʱ£¬ÅжÏf£¨x£©ÔÚ[0£¬2m]ÉÏÁãµãµÄ¸öÊý£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=mlnx-$\frac{{x}^{2}}{2}$£¬f£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬¶Ô?x¡Ê£¨0£¬1£©£¬ÓÐf¡ä£¨x£©•f¡ä£¨1-x£©¡Ü1ºã³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨0£¬$\frac{3}{4}$]B£®[0£¬$\frac{3}{4}$]C£®[0£¬1£©D£®[0£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¨-c£¬0£©£¬µãD£¨0£¬b£©£¬Ö±ÏßDFµÄбÂÊΪ$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨¢ò£©Éè¹ýµãFµÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬¹ýµãP£¨-4c£¬0£©×÷ÓëÖ±ÏßABµÄÇãб½Ç»¥²¹µÄÖ±Ïßl£¬½»ÍÖÔ²CÓÚM£¬NÁ½µã£¬ÎÊ£º$\frac{|FA|•|FB|}{|PM|•|PN|}$ÊÇ·ñΪ¶¨Öµ£¬ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ö±Ïßl·½³ÌΪ£¨2+m£©x+£¨1-2m£©y+4-3m=0
£¨1£©ÇóÖ¤£ºÎÞÂÛmÈ¡ºÎÖµ£¬l¹ý¶¨µã£»
£¨2£©Éè´Ë¶¨µãΪP£¬¹ýPµã×÷Ö±Ïß·Ö±ðÓëÁ½×ø±êÖá½»ÓÚAµãºÍBµã£¬ÈôPΪÏß¶ÎABµÄÖе㣬ÇólµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÉèSnΪµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒ4Sn=n£¨an+an+1£©£¬a5=9£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÉèÇø¼ä£¨an•2n£¬an+1•2n+1£©ÄÚÕûÊýµÄ¸öÊýΪbn£¬Áîcn=$\frac{{b}_{n}-{2}^{n+2}+1}{{4}^{n}}$£¬Èô{cn}µÄǰnÏîºÍΪTn£¬ÇóÖ¤£ºTn£¼3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª$\overrightarrow{a}$=£¨3£¬x£©£¬$\overrightarrow{b}$=£¨9£¬12£©£¬ÇÒ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Ôòx=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=2cos2x+sin2x£¬Çóº¯Êýf£¨x£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸