判断下列函数的奇偶性:
(1)f(x)=x4+x;
(2)f(x)=
(3)f(x)=lg(x+).
科目:高中数学 来源: 题型:解答题
设函数的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;
(2)若E={1,2,a},F={0,},求实数a的值.
(3)若,F=[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
求下列各题中的函数f(x)的解析式.
(1) 已知f(+2)=x+4,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函数y=f(x)满足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2x,求f(x).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=lnx-ax2+(2-a)x.
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<时,f>f;
(3)若函数y=f(x)的图象与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:<0.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2014)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(为常数,且).
(1)当时,求函数的最小值(用表示);
(2)是否存在不同的实数使得,,并且,若存在,求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图像,当时,图像是二次函数图像的一部分,其中顶点,过点;当时,图像是线段,其中,根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com