精英家教网 > 高中数学 > 题目详情
18.已知关于x的方程$\frac{{x}^{2}+2}{x(lnx+k)+2k}$=1在x∈[$\frac{1}{2}$,+∞]上有两个不相等的实数根,则实数k的取值范围为(1,$\frac{9+2ln2}{10}$].

分析 化简方程得x2-xlnx+2=k(x+2),判断左侧函数的单调性,作出函数图象,根据图象交点个数判断k的范围.

解答 解:由$\frac{{x}^{2}+2}{x(lnx+k)+2k}=1$得x2-xlnx+2=k(x+2),
令f(x)=x2-xlnx+2(x$≥\frac{1}{2}$),则f′(x)=2x-lnx-1,
f″(x)=2-$\frac{1}{x}$,∵x$≥\frac{1}{2}$,∴f″(x)≥0,
∴f′(x)在[$\frac{1}{2}$,+∞)上单调递增,∴f′(x)≥f′($\frac{1}{2}$)=-ln$\frac{1}{2}$>0,
∴f(x)在[$\frac{1}{2}$,+∞)上是增函数,
作出f(x)在[$\frac{1}{2}$,+∞)上的函数图象如图所示:

当直线y=k(x+2)经过点($\frac{1}{2}$,$\frac{9+2ln2}{4}$)时,k=$\frac{9+2ln2}{10}$,
当直线y=k(x+2)与y=f(x)相切时,设切点为(x0,y0),
则$\left\{\begin{array}{l}{{y}_{0}=k({x}_{0}+2)}\\{{y}_{0}={{x}_{0}}^{2}-{x}_{0}ln{x}_{0}+2}\\{2{x}_{0}-ln{x}_{0}-1=k}\end{array}\right.$,解得x0=1,y0=3,k=1.
∵方程$\frac{{x}^{2}+2}{x(lnx+k)+2k}$=1在x∈[$\frac{1}{2}$,+∞)上有两个不相等的实数根,
∴直线y=k(x+2)与y=f(x)的图象有两个交点,
∴1<k≤$\frac{9+2ln2}{10}$.
故答案为(1,$\frac{9+2ln2}{10}$].

点评 本题考查了根的个数与函数图象的关系,函数单调性的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,边长为2的菱形ABCD中,∠A=60°,E、F分别是BC、DC的中点,G为 BF、DE的交点,若$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$.
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AG}$;
(2)求$\overrightarrow{BF}•\overrightarrow{AG}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式3≤|5-2x|<9的解集为(  )
A.[-2,1)∪[4,7)B.(-2,1]∪[4,7]C.(-2,1]∪(4,7)D.(-2,1]∪[4,7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输入a的值为2,则输出b(  )
A.-2B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:
(x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1

观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x8项的系数为67,则实数a值为$\frac{26}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是函数y=f(x)求值的程序框图,若输出函数y=f(x)的值域为[4,8],则输入函数y=f(x)的定义域不可能为(  )
A.[-3,-2]B.[-3,-2)∪{2}C.[-3,2]D.[-3,-2]∪{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an},若点(n,an)(n∈N*)在经过点(10,6)的定直线l上,则数列{an}的前19项和S19=(  )
A.120B.119C.114D.110

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1,过C1的左顶点引C1的一条渐进线的平行线,则该直线与另一条渐进线及x轴围成的三角形的面积(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{8}$D.$\frac{{\sqrt{2}}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合P={1,2,3,4,5},Q={X∈R|2≤X≤5},那么下面结论正确的是(  )
A.P∪Q=PB.P∩Q?QC.P∪Q=QD.P∩Q⊆P

查看答案和解析>>

同步练习册答案