精英家教网 > 高中数学 > 题目详情
7.求下列函数的定义域和值域:
(1)y=3${\;}^{\frac{1}{2x+1}}$
(2)y=$\sqrt{1-(\frac{2}{3})^{x}}$
(3)y=log2$\frac{1}{1-{3}^{x}}$.

分析 根据函数解析式有意义列出x意义的不等式和根据定义域来求解值域.

解答 解:(1)y=3${\;}^{\frac{1}{2x+1}}$
定义域满足:2x+1≠0,解得:x$≠-\frac{1}{2}$,
故得定义域为{x|$x≠-\frac{1}{2}$}.
∵$\frac{1}{2x+1}≠0$,且3${\;}^{\frac{1}{2x+1}}$>0,
∴3${\;}^{\frac{1}{2x+1}}$≠1
故得值域为{y|y>0且y≠1}.
(2)y=$\sqrt{1-(\frac{2}{3})^{x}}$
定义域满足:$1-(\frac{2}{3})^{x}≥0$,解得:x≥0,
∵$(\frac{2}{3})^{x}>0$且$1≥(\frac{2}{3})^{x}$,
故得:$0≤1-(\frac{2}{3})^{x}<1$,
∴0≤$\sqrt{1-(\frac{2}{3})^{x}}$<1,
故得值域为{y|1>y≥0}.
(3)y=log2$\frac{1}{1-{3}^{x}}$.
定义域满足:$\frac{1}{1-{3}^{x}}>0$,即1-3x>0,解得:x<0,
故得定义域为{x|x<0}.
∵3x>0,且1-3x>0,即1-3x<1,
故:$\frac{1}{1-{3}^{x}}>1$,
∴log2$\frac{1}{1-{3}^{x}}$>0
故得定义域为{y|y>0}.

点评 本题考查了函数的定义域和值域求法.比较基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知a,b,c∈R,则“b2-4ac<0”是“关于x的不等式ax2+bx+c<0在R上恒成立”的 (  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中点.
(1)求证:平面ABM⊥平面PCD;
(2)求直线CD与平面ACM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f(x)=$\sqrt{x+1}$,则f(2)=(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数是偶函数的是(  )
A.y=x3B.y=3xC.y=2x2-1D.y=x2+2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}满足:a4=7,a10=19,其前n项和为Sn
(1)求数列{an}的通项公式an及Sn
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知公差为d的等差数列{an}和公比q<0的等比数列{bn},a1=b1=1,a2+b2=1,a3+b3=4
(1)求数列{an}和{bn}的通项公式;
(2)令cn=2${\;}^{{a}_{n}}$•bn2(n∈N*),抽去数列{cn}的第1项、第4项、第7项、…、第(3n-2)项、…,余下的项的顺序不变,构成一个新的数列{dn}求数列{dn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间x∈[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,AB=AC=BD=1,AB?平面α,AC⊥平面α,BD⊥AB,BD与平面α成30°角,则C、D间的距离为$\sqrt{2}$

查看答案和解析>>

同步练习册答案