分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用“裂项求和”方法即可得出.
解答 解:(1)设等差数列{an}的公差为d,则$\left\{\begin{array}{l}{{a}_{1}+3d=7}\\{{a}_{1}+9d=19}\end{array}\right.$,
解得:a1=1,d=2,
∴an=1+2(n-1)=2n-1,
Sn=$\frac{n(1+2n-1)}{2}$=n2.
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴数列{bn}的前n项和为Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
点评 本题考查了等差数列的通项公式与求和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 6 | C. | 6xyz | D. | 6yz |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<-1或a>3 | B. | -1<a<3 | C. | -1≤a≤3 | D. | a≤-1或a≥3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<2} | B. | {x|1<x≤2} | C. | {x|0≤x≤1或x≥2} | D. | {x|0≤x≤1或x>2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0] | B. | (-1,0) | C. | [0,1) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x-2)一定是奇函数 | B. | f(x+1)一定是偶函数 | ||
| C. | f(x+3)一定是偶函数 | D. | f(x-3)一定是奇函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com