精英家教网 > 高中数学 > 题目详情
15.点P到图形C上所有点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C的距离与到圆C外的定点A的距离相等的点的轨迹是(  )
A.射线B.椭圆C.双曲线的一支D.抛物线

分析 根据题意可知|PC|-r=|PA|,即P到C与A的距离之差为常数,故而P在双曲线上运动.

解答 解:设圆C的半径为r,由题意可知P到圆C的距离为|PC|-r,
∴|PC|-r=|PA|,即|PC|-|PA|=r.
∴P点轨迹为以A,C为焦点的双曲线靠近A点的一只.
故选:C.

点评 本题考查了圆锥曲线的定义,属于基础题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)存在反函数y=f-1(x),若函数$y=f(x)-\frac{1}{x}$的图象经过点(1,2),则函数$y=\frac{1}{x}+{f^{-1}}(x)$的图象必过点$(3,\frac{4}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=acosC+3bsin(B+C).
(1)若$\frac{c}{b}=\sqrt{3}$,求角A;
(2)在(1)的条件下,若△ABC的面积为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=$\frac{5i}{2+i}$的共轭复数是(  )
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知由不等式组$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x≥1}\end{array}\right.$所确定的平面区域为Ω,则能够覆盖区域Ω的最小圆的方程为(x-1)2+(y-2)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC},sinA=\frac{{\sqrt{5}}}{3}$.
(Ⅰ)求sinC的值;
(Ⅱ)设D为AC的中点,S△ABC=8$\sqrt{5}$,求中线BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别为a,b,c,给出下列命题:
①“a2+b2>c2”是“C角为锐角”的充要条件;
②“△ABC为锐角三角形”是“a5+b5=c5“的既不充分也不必要条件;
③“a${\;}^{\frac{5}{4}}$+b${\;}^{\frac{5}{4}}$=c${\;}^{\frac{5}{4}}$”是“△ABC为钝角三角形”的充分不必要条件;
④若命题p:?A>B,sinA>sinB,则¬p:?A>B,sinA<sinB.
其中所有正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在边长为1的等边△ABC中,E为AC上一点,且AC=4AE,P为BE上一点且满足$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m>0,n>0).则$\frac{1}{m}$+$\frac{1}{n}$取最小值时,|$\overrightarrow{AP}$|=$\frac{\sqrt{7}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(x,-1),且$\overrightarrow{a}-\overrightarrow{b}$与$\overrightarrow{b}$共线,则|x|的值为2.

查看答案和解析>>

同步练习册答案