分析 作出不等式组对应的平面区域,根据条件得到能够覆盖区域Ω的最小的圆是△ABC的外接圆,求出圆的方程即可.
解答
解:作出不等式组对应的平面区域如图:
则△ABC为直角三角形,
则能够覆盖区域Ω的最小的圆是△ABC的外接圆,
由$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
由$\left\{\begin{array}{l}{x=1}\\{x-y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即B(1,1),
则AB的中点坐标为(1,2),半径R=1,
则对应圆的方程为(x-1)2+(y-2)2=1,
故答案为:(x-1)2+(y-2)2=1,
点评 本题主要考查线性规划的应用以及三角形外接圆的计算,作出不等式组对应的平面区域,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 射线 | B. | 椭圆 | C. | 双曲线的一支 | D. | 抛物线 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2-\sqrt{3}$ | B. | 0 | C. | -1 | D. | $-1-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com