精英家教网 > 高中数学 > 题目详情
18.设命题p:若x,y∈R,x=y,则$\frac{x}{y}$=1;
命题q:若函数f(x)=ex,则对任意x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0成立.
在命题①p∧q; ②p∨q; ③p∧(¬q); ④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

分析 命题p:y=0时,$\frac{x}{y}$=1不成立,即可判断出真假;命题q:由于函数f(x)在R上单调递增,即可判断出真假.再利用复合命题真假的判定方法即可得出.

解答 解:命题p:若x,y∈R,x=y,则$\frac{x}{y}$=1,y=0时不成立,因此是假命题;
命题q:若函数f(x)=ex,由于函数f(x)在R上单调递增,则对任意x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0成立,是真命题.
因此在命题①p∧q; ②p∨q; ③p∧(¬q); ④(¬p)∨q中,真命题是②④.
故选:D.

点评 本题考查了复合命题真假的判定方法、函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},则B=(  )
A.{0,1,2,3,4}B.{0,1,2}C.{0,2,4}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)是定义在[a,b]上的函数,如果存在常数M>0,对区间[a,b]的任意划分:a=x0<x1<…<xn-1<xn=b,和式$\sum_{i=1}^{n}$|f(xi)-f(xi-1)|≤M恒成立,则称f(x)为[a,b]上的“绝对差有界函数”,注:$\sum_{i=1}^{n}$ai=a1+a2+…+an
(1)证明函数f(x)=sinx+cosx在[-$\frac{π}{2}$,0]上是“绝对差有界函数”;
(2)记集合A={f(x)|存在常数k>0,对任意的x1,x2∈[a,b],有|f(x1)-f(x2)|≤k|x1-x2|成立},证明集合A中的任意函数f(x)为“绝对差有界函数”.当[a,b]=[1,2]时,判断g(x)=$\sqrt{x}$是否在集合A中,如果在,请证明并求k的最小值;如果不在,请说明理由;
(3)证明函数f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x},0<x≤1}\\{0,x=0}\end{array}\right.$,不是[0,1]上的“绝对差有界函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=acosC+3bsin(B+C).
(1)若$\frac{c}{b}=\sqrt{3}$,求角A;
(2)在(1)的条件下,若△ABC的面积为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中,正确的是(  )
A.若a,b是两条直线,α,β是两个平面,且a?α,b?β,则a,b是异面直线
B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面
C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行
D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=$\frac{5i}{2+i}$的共轭复数是(  )
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知由不等式组$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x≥1}\end{array}\right.$所确定的平面区域为Ω,则能够覆盖区域Ω的最小圆的方程为(x-1)2+(y-2)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别为a,b,c,给出下列命题:
①“a2+b2>c2”是“C角为锐角”的充要条件;
②“△ABC为锐角三角形”是“a5+b5=c5“的既不充分也不必要条件;
③“a${\;}^{\frac{5}{4}}$+b${\;}^{\frac{5}{4}}$=c${\;}^{\frac{5}{4}}$”是“△ABC为钝角三角形”的充分不必要条件;
④若命题p:?A>B,sinA>sinB,则¬p:?A>B,sinA<sinB.
其中所有正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若动点P,Q在椭圆9x2+16y2=144上,且满足OP⊥OQ,则中心O到弦PQ的距离OH必等于(  )
A.$\frac{20}{3}$B.$\frac{23}{4}$C.$\frac{12}{5}$D.$\frac{4}{15}$

查看答案和解析>>

同步练习册答案