精英家教网 > 高中数学 > 题目详情
8.若动点P,Q在椭圆9x2+16y2=144上,且满足OP⊥OQ,则中心O到弦PQ的距离OH必等于(  )
A.$\frac{20}{3}$B.$\frac{23}{4}$C.$\frac{12}{5}$D.$\frac{4}{15}$

分析 对于动点P、Q,我们可以选一个特殊位置,令P是右顶点,Q是上顶点,根据“在一般情况下成立,则在特殊情况下也成立”能求出结果.

解答 解:对于动点P、Q,我们可以选一个特殊位置,
令P是右顶点,Q是上顶点,
由a2=16,b2=9,得OP=4,OQ=3,则OH=$\frac{12}{5}$,
根据“在一般情况下成立,则在特殊情况下也成立”可知,应选C.
故选:C.

点评 动点、动直线、动弦、动角、动轨迹常常是椭圆问题中出现的动态图形,利用这些动态图形的特殊位置往往能帮助我们迅速解决某些选择选择题或填空题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设命题p:若x,y∈R,x=y,则$\frac{x}{y}$=1;
命题q:若函数f(x)=ex,则对任意x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0成立.
在命题①p∧q; ②p∨q; ③p∧(¬q); ④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数$y=2sin({\frac{π}{2}x-\frac{π}{3}})({0≤x≤3})$的最大值与最小值之和为(  )
A.$2-\sqrt{3}$B.0C.-1D.$-1-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在数列{an}中,an+1=$\frac{n}{n+2}$an,且a1=2.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n顶和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.用X表示10次射击中命中目标的次数,分别说明下列集合所代表的随机事件
(1){X=8};
(2){1<X≤9};
(3){X≥1};
(4){X<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆的中心在坐标原点,对称轴为坐标轴,且过点P($\frac{3}{2}$,-$\frac{5}{2}$),Q(-$\sqrt{3}$,$\sqrt{5}$)两点,求此椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直角三角形ABC,三内角成等差数列,最短边的边长为m(m>0),P是△ABC内一点,并且∠APB=∠APC=∠BPC=120°,则PA+PB+PC=$\sqrt{21}$时,m的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过点P(3,3)向圆O:x2+y2=4作两条切线PA,PB,求:
(1)线段PA的长.
(2)弦AB所在的直线方程.
(3)问是否存在过点P的直线L交圆O于M,N两点,使得点M是线段PN的中点,若存在,求出直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$,n=1,2,3,…
(1)求证:{an+2n}是等比数列;
(2)设Tn=$\frac{{2}^{n}}{{S}_{n}}$,n=1,2,3…证明:$\sum_{i=1}^{n}$Ti<$\frac{3}{2}$(其中$\sum_{i=1}^{n}$Ti=T1+T2+…+Tn

查看答案和解析>>

同步练习册答案