精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=mlnx,g(x)=$\frac{x}{x+1}$(x>0).
(Ⅰ)当m=1时,求曲线y=f(x)•g(x)在x=1处的切线方程;
(Ⅱ)讨论函数F(x)=f(x)-g(x)在(0,+∞)上的单调性.

分析 (I)利用导数的运算法则可得切线的斜率,利用点斜式即可得出.
(Ⅱ)f′(x)=$\frac{m}{x}$,g′(x)=$\frac{1}{(x+1)^{2}}$,F′(x)=f′(x)-g′(x)=$\frac{m}{x}$-$\frac{1}{(x+1)^{2}}$=$\frac{m{x}^{2}+(2m-1)x+m}{x(x+1)^{2}}$,对m分类讨论,利用导数研究函数的单调性即可得出.

解答 解:(Ⅰ)当m=1时,曲线y=f(x)g(x)=$\frac{xlnx}{x+1}$.
y′=$\frac{(1+lnx)(x+1)-xlnx}{(x+1)^{2}}$=$\frac{lnx+x+1}{(x+1)^{2}}$,…(2分)
x=1时,切线的斜率为$\frac{1}{2}$,又切线过点(1,0).
所以切线方程为y=$\frac{1}{2}$(x-1),化为:x-2y-1=0.…(4分)
(Ⅱ)f′(x)=$\frac{m}{x}$,g′(x)=$\frac{1}{(x+1)^{2}}$,
F′(x)=f′(x)-g′(x)=$\frac{m}{x}$-$\frac{1}{(x+1)^{2}}$=$\frac{m{x}^{2}+(2m-1)x+m}{x(x+1)^{2}}$,
当m≤0时,F′(x)<0,函数F(x)在(0,+∞)上单调递减;…(6分)
当m>0时,令k(x)=mx2+(2m-1)x+m,△=(2m-1)2-4m2=1-4m,
当△≤0时,即m≥$\frac{1}{4}$,k(x)≥0,
此时F′(x)≥0,函数F(x)在(0,+∞)上单调递增;…(8分)
当△>0时,即$0<m<\frac{1}{4}$,
方程mx2+(2m-1)x+m=0有两个不等实根x1<x2,(x1=$\frac{(1-2m)-\sqrt{1-4m}}{2m}$,x2=$\frac{1-2m+\sqrt{1-4m}}{2m}$).
∴x1+x2=$\frac{1-2m}{m}$=$\frac{1}{m}$-2>2,x1•x2=1,…(10分)
所以0<x1<1<x2
此时,函数F(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减
综上所述,当m≤0时,F(x)的单减区间是(0,+∞);
当$0<m<\frac{1}{4}$时,F(x)的单减区间是(x1,x2),单增区间是(0,x1),(x2,+∞)上单调递增;
当$m≥\frac{1}{4}$时,F(x)单增区间是(0,+∞).…(12分)

点评 本题考查了利用导数研究函数的单调性、切线的斜率、一元二次方程的实数根与判别式的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.圆C与x轴相切于T(1,0),与y轴正半轴交于两点A、B,且|AB|=2,则圆C的标准方程为(  )
A.(x-1)2+(y-$\sqrt{2}$)2=2B.(x-1)2+(y-2)2=2C.(x+1)2+(y+$\sqrt{2}$)2=4D.(x-1)2+(y-$\sqrt{2}$)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设方程5-x=|lgx|的两个根分别为x1,x2,则(  )
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(2x-1)(x+y)5的展开式中,x3y3的系数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积是(  )
A.16B.20C.52D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=f(x)满足f(2+x)+f(2-x)=0,g(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+4,x>2}\\{-{x}^{2}+4x-4,x<2}\end{array}\right.$,若曲线y=f(x)与y=g(x)交于A1(x1,y1),A2(x2,y2),…,An(xn,yn),则$\sum_{i=1}^{n}$(xi+yi)等于(  )
A.4nB.2nC.nD.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为(  )
A.$\frac{2\sqrt{2}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0∈R,x03-x02+1>0”的否定是(  )
A.?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1<0B.?x∈R,x3-x2+1≤0
C.?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1≤0D.?x∈R,x3-x2+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用数学归纳法证明不等式“$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}>\frac{13}{24}(n>2)$”时的过程中,由n=k到n=k+1,(k>2)时,不等式的左边(  )
A.增加了一项$\frac{1}{2(k+1)}$
B.增加了两项$\frac{1}{2k+1}+\frac{1}{2(k+1)}$
C.增加了一项$\frac{1}{2(k+1)}$,又减少了一项$\frac{1}{k+1}$
D.增加了两项$\frac{1}{2k+1}+\frac{1}{2(k+1)}$,又减少了一项$\frac{1}{k+1}$

查看答案和解析>>

同步练习册答案