精英家教网 > 高中数学 > 题目详情
20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为(  )
A.$\frac{2\sqrt{2}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 由题意,|PF1|=2|PF2|,|PF1|-|PF2|=2a,可得|PF1|=4a,|PF2|=2a,由∠MF2N=120°,可得∠F1PF2=120°,由余弦定理可得4c2=16a2+4a2-2•4a•2a•cos120°,即可求出双曲线C的离心率.

解答 解:由题意,|PF1|=2|PF2|,
由双曲线的定义可得,|PF1|-|PF2|=2a,
可得|PF1|=4a,|PF2|=2a
由四边形PF1MF2为平行四边形,
又∠MF2N=120°,可得∠F1PF2=120°,
在三角形PF1F2中,由余弦定理可得
4c2=16a2+4a2-2•4a•2a•cos120°,
即有4c2=20a2+8a2,即c2=7a2
可得c=$\sqrt{7}$a,
即e=$\frac{c}{a}$=$\sqrt{7}$.
故选B.

点评 本题考查双曲线C的离心率,注意运用双曲线的定义和三角形的余弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.某公司某件产品的定价x与销量y之间的数据统计表如下,根据数据,用最小二乘法得出y与x的线性回归直线方程为:$\widehat{y}$=6.5$\widehat{x}$+17.5,则表格中n的值应为(  )
 x 2 4
 y 30 4050 70 
A.45B.50C.55D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mlnx,g(x)=$\frac{x}{x+1}$(x>0).
(Ⅰ)当m=1时,求曲线y=f(x)•g(x)在x=1处的切线方程;
(Ⅱ)讨论函数F(x)=f(x)-g(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知抛物线C:y2=4x的焦点F,直线MN过焦点F且与抛物线C交于M,N两点,D为线段MF上一点,且|MD|=2|NF|,若|DF|=1,则|MF|=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数$y=sin({2x-\frac{π}{6}})$向右平移$\frac{π}{12}$个单位后得到y=g(x)的图象,若函数y=g(x)在区间[a,b](b>a)上的值域是$[{-\frac{1}{2},1}]$,则b-a的最小值m和最大值M分别为(  )
A.$m=\frac{π}{6},M=\frac{π}{3}$B.$m=\frac{π}{3},M=\frac{2π}{3}$C.$m=\frac{4π}{3},M=2π$D.$m=\frac{2π}{3},M=\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中,若方程$\frac{{x}^{2}}{{m}^{2}+4}$-$\frac{{y}^{2}}{2m}$=1表示双曲线,则实数m的范围m>0;若此双曲线的离心率为$\sqrt{3}$,则双曲线的渐近线方程为y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+m(m为常数),则f(-1)=(  )
A.3B.1C.-1D.-3

查看答案和解析>>

同步练习册答案