精英家教网 > 高中数学 > 题目详情
5.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.3B.4C.5D.6

分析 由已知几何体的三视图得到几何体为棱柱,由两个三棱锥组合成的,根据棱柱的体积公式计算即可.

解答 解:由已知三视图得到几何体如图:
由团长时间得到体积为$[1×1+(1+2)×1×\frac{1}{2}]×2$=5;
故选C.

点评 本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\sqrt{3}$sin2x+sinxcosx-$\frac{\sqrt{3}}{2}$.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)在△ABC中,A为锐角且f(A)=$\frac{\sqrt{3}}{2}$,a=2,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(2x-1)(x+y)5的展开式中,x3y3的系数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=f(x)满足f(2+x)+f(2-x)=0,g(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+4,x>2}\\{-{x}^{2}+4x-4,x<2}\end{array}\right.$,若曲线y=f(x)与y=g(x)交于A1(x1,y1),A2(x2,y2),…,An(xn,yn),则$\sum_{i=1}^{n}$(xi+yi)等于(  )
A.4nB.2nC.nD.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为(  )
A.$\frac{2\sqrt{2}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了解某高校学生中午午休时间玩手机情况,随机抽取了100名大学生进行调查.下面是根据调查结果绘制的学生日均午休时间的频率分布直方图:将日均午休时玩手机不低于40分钟的学生称为“手机控”.
非手机迷手机迷合计
xxm
y1055
合计75      25           100       
(1)求列表中数据的值;
(2)能否有95%的把握认为“手机控”与性别有关?
注:k2=$\frac{n(ac-bd)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥x00.050.10
k03.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0∈R,x03-x02+1>0”的否定是(  )
A.?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1<0B.?x∈R,x3-x2+1≤0
C.?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1≤0D.?x∈R,x3-x2+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=cos($\frac{1}{3}$x-φ),(0≤φ≤π)是R上的奇函数,则φ的值是(  )
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设$f(x)=(\sqrt{3}sin\frac{x}{2}+cos\frac{x}{2})sin(\frac{x}{2}+\frac{π}{2})-\frac{1}{2}$.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,已知$f(A+\frac{π}{3})=-\frac{1}{2}$,$a=\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案