| A. | $m=\frac{π}{6},M=\frac{π}{3}$ | B. | $m=\frac{π}{3},M=\frac{2π}{3}$ | C. | $m=\frac{4π}{3},M=2π$ | D. | $m=\frac{2π}{3},M=\frac{4π}{3}$ |
分析 由已知利用函数y=Asin(ωx+φ)的图象变换规律可求g(x)的函数解析式,进而利用正弦函数的图象和性质即可求解.
解答 解:将函数$y=sin({2x-\frac{π}{6}})$向右平移$\frac{π}{12}$后,得到:$y=g(x)=sin[{2({x-\frac{π}{12}})-\frac{π}{6}}]=sin({2x-\frac{π}{3}})$,
由函数$g(x)=sin({2x-\frac{π}{3}})$的图象可知,
当函数的值域是$[{-\frac{1}{2},1}]$,最小值:$m=\frac{5π}{12}-\frac{π}{12}=\frac{π}{3}$,最大值:$M=2m=\frac{2π}{3}$.
故选:B.
点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质的综合应用,考查了数形结合思想,熟练掌握正弦函数的图象和性质是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{2}}{3}$ | B. | $\sqrt{7}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π | B. | $\sqrt{6}π$ | C. | 6π | D. | $4\sqrt{3}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1<0 | B. | ?x∈R,x3-x2+1≤0 | ||
| C. | ?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1≤0 | D. | ?x∈R,x3-x2+1>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (9+$\sqrt{5}$)π | B. | (9+2$\sqrt{5}$)π | C. | (10+$\sqrt{5}$)π | D. | (10+2$\sqrt{5}$)π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 广告费用x | 2 | 3 | 5 | 6 |
| 销售额y | 7 | m | 9 | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com