精英家教网 > 高中数学 > 题目详情
1.设p:关于x的不等式ax>1 (a>0且a≠1)的解集为{x|x<0},q:函数y=lg(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围.

分析 求出p真、q真时a的范围,又p和q有且仅有一个正确,即p真q假或p假q真,列式计算即可

解答 解 当p真时,0<a<1,
当q真时,$\left\{\begin{array}{l}{a>0}\\{1-4{a}^{2}<0}\end{array}\right.$ 即a>$\frac{1}{2}$,
∴p假时,a>1,q假时,a≤$\frac{1}{2}$.
又p和q有且仅有一个正确.
当p真q假时,0<a≤$\frac{1}{2}$,当p假q真时,a>1.
综上得,a∈(0,$\frac{1}{2}$]∪(1,+∞).

点评 本题考查了复合命题真假的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.将函数$y=sin({2x-\frac{π}{6}})$向右平移$\frac{π}{12}$个单位后得到y=g(x)的图象,若函数y=g(x)在区间[a,b](b>a)上的值域是$[{-\frac{1}{2},1}]$,则b-a的最小值m和最大值M分别为(  )
A.$m=\frac{π}{6},M=\frac{π}{3}$B.$m=\frac{π}{3},M=\frac{2π}{3}$C.$m=\frac{4π}{3},M=2π$D.$m=\frac{2π}{3},M=\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中,若方程$\frac{{x}^{2}}{{m}^{2}+4}$-$\frac{{y}^{2}}{2m}$=1表示双曲线,则实数m的范围m>0;若此双曲线的离心率为$\sqrt{3}$,则双曲线的渐近线方程为y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,4),$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow{b}$(λ∈R).
(1)若$\overrightarrow{b}$⊥$\overrightarrow{c}$,求|$\overrightarrow{c}$|的值;
(2)λ何值时,$\overrightarrow{c}$与$\overrightarrow{a}$的夹角最小?此时$\overrightarrow{c}$与$\overrightarrow{a}$的位置关系如何?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={x∈Z|x(x-3)≤0},N={x|lnx<1},则M∩N=(  )
A.{1,2}B.{2,3}C.{0,1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设$\overrightarrow{AP}=x\overrightarrow{AD},\overrightarrow{PB}•\overrightarrow{PC}=y$,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②对于任意的a>0,均有f(1)=1;③对于任意的a>0,函数f(x)的最大值均为4.其中所有正确的结论序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+m(m为常数),则f(-1)=(  )
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知P为曲线${C_1}:\frac{x^2}{12}+\frac{y^2}{4}=1$上的动点,直线C2的参数方程为$\left\{{\begin{array}{l}{x=3+\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}-\frac{1}{2}t}\end{array}}\right.$(t为参数)求点P到直线C2距离的最大值,并求出点P的坐标.

查看答案和解析>>

同步练习册答案