精英家教网 > 高中数学 > 题目详情
14.△ABC的三个内角A,B,C所对的边分别是a,b,c,若$a=2,c=\sqrt{19}$,$tanA+tanB=\sqrt{3}-\sqrt{3}tanAtanB$,则△ABC的面积S△ABC=(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 由题意和正切函数变形和三角形的内角和可得C值,由余弦定理可得b值,代入三角形面积公式可得.

解答 解:△ABC中,∵$tanA+tanB=\sqrt{3}-\sqrt{3}tanAtanB$
∴$\frac{tanA+tanB}{1-tanAtanB}=\sqrt{3}=tan(A+B)$,∴$A+B=\frac{π}{3}$,
∴$C=\frac{2π}{3}$,又由余弦定理可得${c^2}={a^2}+{b^2}-2abcos\frac{2π}{3}$,
代入a=2,$c=\sqrt{19}$可得19=4+b2+2b,
整理可得b2+2b-15=0,解得b=3或b=-5(舍去),
∴${S_{△ABC}}=\frac{1}{2}absinC=\frac{{3\sqrt{3}}}{2}$,
故选:A.

点评 本题考查正余弦定理解三角形,涉及三角形的面积公式和和差角的三角函数公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知抛物线y2=4$\sqrt{2}$x的准线恰好是双曲线$\frac{x^2}{a^2}-\frac{y^2}{4}$=1的左准线,则双曲线的渐近线方程为y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)存在反函数y=f-1(x),若函数$y=f(x)-\frac{1}{x}$的图象经过点(1,2),则函数$y=\frac{1}{x}+{f^{-1}}(x)$的图象必过点$(3,\frac{4}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(x2-$\frac{1}{2x}$)6的展开式中,常数项是(  )
A.$\frac{15}{16}$B.$\frac{5}{4}$C.-$\frac{15}{16}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)是定义在[a,b]上的函数,如果存在常数M>0,对区间[a,b]的任意划分:a=x0<x1<…<xn-1<xn=b,和式$\sum_{i=1}^{n}$|f(xi)-f(xi-1)|≤M恒成立,则称f(x)为[a,b]上的“绝对差有界函数”,注:$\sum_{i=1}^{n}$ai=a1+a2+…+an
(1)证明函数f(x)=sinx+cosx在[-$\frac{π}{2}$,0]上是“绝对差有界函数”;
(2)记集合A={f(x)|存在常数k>0,对任意的x1,x2∈[a,b],有|f(x1)-f(x2)|≤k|x1-x2|成立},证明集合A中的任意函数f(x)为“绝对差有界函数”.当[a,b]=[1,2]时,判断g(x)=$\sqrt{x}$是否在集合A中,如果在,请证明并求k的最小值;如果不在,请说明理由;
(3)证明函数f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x},0<x≤1}\\{0,x=0}\end{array}\right.$,不是[0,1]上的“绝对差有界函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若命题“?x∈R,2x2+m>4x”是真命题,则m的值可以是.
A.$\frac{3}{2}$B.-1C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=acosC+3bsin(B+C).
(1)若$\frac{c}{b}=\sqrt{3}$,求角A;
(2)在(1)的条件下,若△ABC的面积为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=$\frac{5i}{2+i}$的共轭复数是(  )
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在边长为1的等边△ABC中,E为AC上一点,且AC=4AE,P为BE上一点且满足$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m>0,n>0).则$\frac{1}{m}$+$\frac{1}{n}$取最小值时,|$\overrightarrow{AP}$|=$\frac{\sqrt{7}}{6}$.

查看答案和解析>>

同步练习册答案