精英家教网 > 高中数学 > 题目详情
15.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(1)求四棱锥P-BCD外接球(即P,B,C,D四点都在球面上)的表面积;
(2)求证:平面FGH⊥平面AEB;
(3)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

分析 (1)证明PD⊥BD,PC⊥BC,根据直角三角形的中线特点得出F为外接球的球心,计算出球的半径代入面积公式计算即可;
(2)证明BC⊥平面ABE,FH∥BC即可得出FH⊥平面ABE,于是平面FGH⊥平面AEB;
(3)证明EF⊥PB,故只需FM⊥PB即可,利用相似三角形计算出PM.

解答 解:(1)连结FD,FC,
∵EA⊥平面ABCD,PD∥EA,
∴PD⊥平面ABCD,又BD?平面ABCD,
∴PD⊥BD,∵F是PB的中点,
∴DF=$\frac{1}{2}$PB,
同理可得FC=$\frac{1}{2}$PB,
∴F为棱锥P-BCD的外接球的球心.
∵AD=PD=2EA=2,
∴BD=2$\sqrt{2}$,PB=$\sqrt{P{D}^{2}+B{D}^{2}}$=2$\sqrt{3}$,
∴四棱锥P-BCD外接球的表面积为4π•($\frac{2\sqrt{3}}{2}$)2=12π.
(2)证明:∵EA⊥平面ABCD,BC?平面ABCD,
∴EA⊥CB.又CB⊥AB,AB∩AE=A,
∴CB⊥平面ABE.
∵F,H分别为线段PB,PC的中点,
∴FH∥BC.
∴FH⊥平面ABE.又FH?平面FGH,
∴平面FGH⊥平面ABE.
(3)在直角三角形AEB中,∵AE=1,AB=2,∴$BE=\sqrt{5}$.
在直角梯形EADP中,∵AE=1,AD=PD=2,∴$PE=\sqrt{5}$,
∴PE=BE.又F为PB的中点,
∴EF⊥PB.
假设在线段PC上存在一点M,使PB⊥平面EFM.
只需满足PB⊥FM即可,
∵PD⊥平面ABCD,BC?平面ABCD,
∴PD⊥CB,又CB⊥CD,PD∩CD=D,
∴CB⊥平面PCD,∵PC?平面PCD,
∴CB⊥PC.若PB⊥FM,则△PFM∽△PCB,∴$\frac{PM}{PB}=\frac{PF}{PC}$.
∵$PB=2\sqrt{3}$,$PF=\sqrt{3}$,$PC=2\sqrt{2}$,
∴$PM=\frac{{3\sqrt{2}}}{2}$.
∴线段PC上存在一点M,使PB⊥平面EFM,此时PM=$\frac{3\sqrt{2}}{2}$.

点评 本题考查了球与棱锥的位置关系,面面垂直的判定,线面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人.
晕机不晕机总计
男乘客
女乘客
总计
(1)根据以上数据完成右边 2×2列联表;
(2)试判断晕机是否与性别有关?
(参考数据:K2≥2.706时,有90%的把握判定变量A,B有关联;K2≥3.841时,有95%的把握判定变量A,B有关联;K2≥6.635时,有99%的把握判定变量A,B有关联.参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={1,2,3,4,5},B={1,3},则A∩B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知平面内三个向量:$\overrightarrow a=(3,2),\overrightarrow b=(-1,2),\overrightarrow c=(4,1)$.
(Ⅰ)若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b-\overrightarrow a)$,求实数k的值;
(Ⅱ)设$\overrightarrow d=(x,y)$,且满足$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow d-\overrightarrow c)$,$|\overrightarrow d-\overrightarrow c|=\sqrt{5}$,求$\overrightarrow d$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l1:y=3x-4和直线l2:关于点M(2,1)对称,则l2的方程为3x-y-6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知盒子中有4个红球,2个白球,从中一次抓三个球,
(1)求没有抓到白球的概率;
(2)记抓到球中的红球数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+alnx(a∈R),g(x)=ex-1
(1)若直线y=0与函数y=f(x)的图象相切,求a的值;
(2)设a>0,对于?x1,x2∈[3,+∞)(x1≠x2)都有|f(x1)-f(x2)|<|g(x1)-g(x2)|,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的导函数为f'(x),对一切的x∈R都有f'(x)>f(x)成立,对任意正数a,b,若a<b,则有(  )
A.bf(lna)<af(lnb)B.bf(lna)=af(lnb)
C.bf(lna)>af(lnb)D.bf(lna)与af(lnb)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x,y∈R,满足2≤y≤4-x,x≥1,则$\frac{{{x^2}+{y^2}+2x-2y+2}}{xy-x+y-1}$的最大值为$\frac{10}{3}$.

查看答案和解析>>

同步练习册答案