精英家教网 > 高中数学 > 题目详情
20.已知盒子中有4个红球,2个白球,从中一次抓三个球,
(1)求没有抓到白球的概率;
(2)记抓到球中的红球数为X,求X的分布列和数学期望.

分析 (1)使用组合数公式计算概率;
(2)根据超几何分布的概率公式计算概率,得出分布列,再计算数学期望.

解答 解:(1)没有抓到白球,即取到的全是红球,∴没有抓到白球的概率是$\frac{C_4^3C_2^0}{C_6^3}=\frac{1}{5}$.
(2)X的所有可能取值为1,2,3,
$P({X=1})=\frac{C_4^1C_2^2}{C_6^3}=\frac{1}{5}$,$P({X=2})=\frac{C_4^2C_2^1}{C_6^3}$=$\frac{3}{5}$,$P({X=3})=\frac{C_4^3C_2^0}{C_6^3}=\frac{1}{5}$,
∴X的分布列为:

X123
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
∴E(X)=1×$\frac{1}{5}$+2×$\frac{3}{5}$+3×$\frac{1}{5}$=2.

点评 本题考查了组合数公式,超几何分布,数学期望的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在直三棱柱ABC-A'B'C'中,AB=AC,D、E分别是棱BC、CC'上的点(点D不同于点C),且AD⊥BC,F为B'C'的中点.求证:
(Ⅰ)平面ADE⊥平面BCC'B';     
(Ⅱ)直线A'F∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|1≤x≤2},B={x|m≤x≤m+3}.
(1)当m=2时,求A∪B;
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C满足$2\sqrt{3}sinAsinB=5sinC$且$cosB=\frac{11}{14}$.
(1)求角A的大小;
(2)若内角A,B,C的对边分别为a,b,c,且a=14,求边BC上的中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(1)求四棱锥P-BCD外接球(即P,B,C,D四点都在球面上)的表面积;
(2)求证:平面FGH⊥平面AEB;
(3)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥E-ABCD中,四边形ABCD为矩形,BC⊥EB,EA⊥EB,M,N分别为AE,CD的中点,求证:
(1)直线MN∥平面EBC;
(2)直线EA⊥平面EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC中,c是a与b的等差中项,sinA,sinB,sinC依次为一等比数列的前n项,前2n项,前3n项的和,则cosC的值为(  )
A.$\frac{1}{2}$B.$\frac{9}{16}$C.$\frac{11}{16}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某牙膏厂生产的牙膏的年销售量(即该厂的年产量)x万支与年广告费用a万元(a≥0)满足$x=3-\frac{k}{a+1}$(k为常数),如果不进行广告宣传,则该牙膏的年销售量是1万支.已知2014年生产该牙膏的固定投入为8万元,每生产1万支该产品需要再投入16万元,厂家将每支牙膏的销售价格定为每支牙膏平均成本的$\frac{3}{2}$倍(产品成本包括固定投入和再投入两部分资金,不包括广告费用).
(1)将2014年该产品的利润y万元表示为年广告费用a万元的函数;
(产品的利润=销售收入-产品成本-广告费用)
(2)该厂家2014年的广告费用为多少万元时,厂家的利润最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+$\frac{1}{x}$.
(1)从区间(-2,2)内任取一个实数a,设事件A表示“函数y=f(x)-2在区间(0,+∞)上有两个不同的零点”,求事件A发生的概率;
(2)若连续掷两次一颗均匀的骰子(骰子六个面上标注的点数分别为1,2,3,4,5,6)得到的点数分别为a和b,记事件B表示“f(x)>b在x∈(0,+∞)上恒成立”,求事件B发生的概率.

查看答案和解析>>

同步练习册答案