9£®Ä³ÑÀ¸à³§Éú²úµÄÑÀ¸àµÄÄêÏúÊÛÁ¿£¨¼´¸Ã³§µÄÄê²úÁ¿£©xÍòÖ§ÓëÄê¹ã¸æ·ÑÓÃaÍòÔª£¨a¡Ý0£©Âú×ã$x=3-\frac{k}{a+1}$£¨kΪ³£Êý£©£¬Èç¹û²»½øÐÐ¹ã¸æÐû´«£¬Ôò¸ÃÑÀ¸àµÄÄêÏúÊÛÁ¿ÊÇ1ÍòÖ§£®ÒÑÖª2014ÄêÉú²ú¸ÃÑÀ¸àµÄ¹Ì¶¨Í¶ÈëΪ8ÍòÔª£¬Ã¿Éú²ú1ÍòÖ§¸Ã²úÆ·ÐèÒªÔÙͶÈë16ÍòÔª£¬³§¼Ò½«Ã¿Ö§ÑÀ¸àµÄÏúÊÛ¼Û¸ñ¶¨ÎªÃ¿Ö§ÑÀ¸àƽ¾ù³É±¾µÄ$\frac{3}{2}$±¶£¨²úÆ·³É±¾°üÀ¨¹Ì¶¨Í¶ÈëºÍÔÙͶÈëÁ½²¿·Ö×ʽ𣬲»°üÀ¨¹ã¸æ·ÑÓã©£®
£¨1£©½«2014Äê¸Ã²úÆ·µÄÀûÈóyÍòÔª±íʾΪÄê¹ã¸æ·ÑÓÃaÍòÔªµÄº¯Êý£»
£¨²úÆ·µÄÀûÈó=ÏúÊÛÊÕÈë-²úÆ·³É±¾-¹ã¸æ·ÑÓã©
£¨2£©¸Ã³§¼Ò2014ÄêµÄ¹ã¸æ·ÑÓÃΪ¶àÉÙÍòԪʱ£¬³§¼ÒµÄÀûÈó×î´ó£¿×î´óÖµÊǶàÉÙ£¿

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖªµ±a=0ʱ£¬x=1£¨Íò¼þ£©£¬¿ÉµÃ1=3-k£¬½âµÃk£®¼´¿ÉµÃ³ö$x=3-\frac{2}{a+1}$£®Ã¿¼þ²úÆ·µÄÏúÊÛ¼Û¸ñΪ$15•\frac{8+16x}{x}$£¨Ôª£©£®¿ÉµÃ2014ÄêµÄÀûÈóy=x$£¨\frac{3}{2}•\frac{8+16x}{x}£©$-£¨8+16x+a£©=-$[\frac{16}{a+1}+£¨a+1£©]+29$£¨a¡Ý0£©£®
£¨2£©·½·¨Ò»£ºÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
·½·¨¶þ£ºÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼«ÖµÓë×îÖµ£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖªµ±a=0ʱ£¬x=1£¨Íò¼þ£©
¡à1=3-k£¬¼´k=2£®
ËùÒÔ$x=3-\frac{2}{a+1}$£®Ã¿¼þ²úÆ·µÄÏúÊÛ¼Û¸ñΪ$15•\frac{8+16x}{x}$£¨Ôª£©
¡à2014ÄêµÄÀûÈóy=x$£¨\frac{3}{2}•\frac{8+16x}{x}£©$-£¨8+16x+a£©=4+8x-a=4+8$£¨3-\frac{2}{a+1}£©$-a
=-$[\frac{16}{a+1}+£¨a+1£©]+29$£¨a¡Ý0£©£®
£¨2£©·½·¨Ò»£º¡ß$a¡Ý0£¬\frac{16}{a+1}+£¨{a+1}£©¡Ý2\sqrt{16}=8$£¬
¡ày¡Ü-8+29=21£®µ±ÇÒ½öµ±$\frac{16}{a+1}=£¨{a+1}£©⇒a=3$£¨ÍòÔª£©Ê±£¬ymax=21£¨ÍòÔª£©
ËùÒÔµ±¹ã¸æ·ÑÓÃΪ3ÍòԪʱ£¬ÀûÈó×î´ó£¬×î´óÖµÊÇ21ÍòÔª£®
·½·¨¶þ£ºÇóµ¼£º$y=x£¨{\frac{3}{2}¡Á\frac{8+16x}{x}}£©-£¨{8+16x+a}£©$=4+8x-a
=$4+8£¨{3-\frac{2}{a+1}}£©$-a=$£¨{-\frac{16}{a+1}}£©$-a+28£¬y'=$\frac{16}{{{{£¨a+1£©}^2}}}$-1£¬
Áîy'=0£¬ÇóµÃa=3£¬´úÈëÔ­º¯Êý£¬×î´óΪ21ÍòÔª£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄÐÔÖʼ°ÆäÓ¦Óᢻù±¾²»µÈʽµÄÐÔÖÊ¡¢ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼«ÖµÓë×îÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª$\vec a=£¨{1£¬2}£©£¬\vec b=£¨{-2£¬y}£©$£¬ÇÒ$\vec a¡Î\vec b$£®Çó£º
£¨¢ñ£©$\vec a•\vec b$£»
£¨¢ò£©$2\vec a-\vec b$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªºÐ×ÓÖÐÓÐ4¸öºìÇò£¬2¸ö°×Çò£¬´ÓÖÐÒ»´Î×¥Èý¸öÇò£¬
£¨1£©ÇóûÓÐ×¥µ½°×ÇòµÄ¸ÅÂÊ£»
£¨2£©¼Ç×¥µ½ÇòÖеĺìÇòÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÊýÁÐ{an}ÖУ¬${a_1}=\frac{5}{3}£¬{a_2}=\frac{7}{3}$£¬ÇÒ${a_{n+2}}=\frac{5}{3}{a_{n+1}}-\frac{2}{3}{a_n}\begin{array}{l}£¬{n¡Ê{N^*}}\end{array}$£®
£¨1£©Çóa3£¬a4£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨3£©ÈôÊýÁÐ{bn}µÄǰnÏîºÍ${S_n}=\frac{1}{3}{n^2}$£¬ÇóÊýÁÐ{anbn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x£©µÄµ¼º¯ÊýΪf'£¨x£©£¬¶ÔÒ»ÇеÄx¡ÊR¶¼ÓÐf'£¨x£©£¾f£¨x£©³ÉÁ¢£¬¶ÔÈÎÒâÕýÊýa£¬b£¬Èôa£¼b£¬ÔòÓУ¨¡¡¡¡£©
A£®bf£¨lna£©£¼af£¨lnb£©B£®bf£¨lna£©=af£¨lnb£©
C£®bf£¨lna£©£¾af£¨lnb£©D£®bf£¨lna£©Óëaf£¨lnb£©µÄ´óС²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³µØÇø2007ÄêÖÁ2013ÄêÅ©´å¾ÓÃñ¼ÒÍ¥È˾ù´¿ÊÕÈëy£¨µ¥Î»£ºÇ§Ôª£©µÄÊý¾ÝÈç±í£º
Äê·Ý2007200820092010201120122013
Äê·Ý´úºÅt1234567
È˾ù´¿ÊÕÈëy2.93.33.64.44.85.25.9
£¨1£©Çóy¹ØÓÚtµÄÏßÐԻع鷽³Ì£»
£¨2£©ÀûÓã¨1£©ÖеĻع鷽³Ì£¬·ÖÎö2007ÄêÖÁ2013Äê¸ÃµØÇøÅ©´å¾ÓÃñ¼ÒÍ¥È˾ù´¿ÊÕÈëµÄ±ä»¯Çé¿ö£¬²¢Ô¤²â¸ÃµØÇø2015ÄêÅ©´å¾ÓÃñ¼ÒÍ¥È˾ù´¿ÊÕÈ룮
¿ÉÓù«Ê½£º$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n£¨\overline x{£©^2}}}}$=$\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{£¨{x_i}-\overline x{£©^2}}}}$£¬$\widehat{a}$=$\overline y$-$\widehat{b}$$\overline x$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÒÑÖªÆ½Ãæ¦Á£¬¦Â£¬ÇÒ¦Á¡É¦Â=AB£¬PC¡Í¦Á£¬PD¡Í¦Â£¬C£¬DÊÇ´¹×㣮
£¨1£©ÇóÖ¤£ºAB¡ÍCD£»
£¨2£©ÈôPC=PD=1£¬CD=$\sqrt{2}$£¬Ö¤Ã÷£º¦Á¡Í¦Â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x£¬x¡Ü0}\\{{x}^{2}-x£¬x£¾0}\end{array}\right.$£¬Èôº¯Êýg£¨x£©=f£¨x£©-mÓÐÈý¸ö²»Í¬µÄÁãµã£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨{-\frac{1}{4}£¬0}£©$B£®$£¨{-\frac{1}{4}£¬0}]$C£®$[{-\frac{1}{2}£¬1}]$D£®$[{-\frac{1}{2}£¬1}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©=x3+3ax2-9x+5£¬Èôf£¨x£©ÔÚx=1´¦Óм«Öµ£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸