精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{x,x≤0}\\{{x}^{2}-x,x>0}\end{array}\right.$,若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为(  )
A.$({-\frac{1}{4},0})$B.$({-\frac{1}{4},0}]$C.$[{-\frac{1}{2},1}]$D.$[{-\frac{1}{2},1})$

分析 画出函数y=f(x)以及y=m的图象,然后结合已知条件求解m的范围即可.

解答 解:函数y=f(x)与y=m如图:当x>0时,y=x2-x,
开口向上,对称轴为x=$\frac{1}{2}$,函数的最小值为:$-\frac{1}{4}$,
函数g(x)=f(x)-m有三个不同的零点,
就是两个函数y=f(x)与y=m有3个不同的交点,
由图象可得:m$∈(-\frac{1}{4},0)$.
故选:A.

点评 本题考查函数的零点个数,分段函数的应用,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C满足$2\sqrt{3}sinAsinB=5sinC$且$cosB=\frac{11}{14}$.
(1)求角A的大小;
(2)若内角A,B,C的对边分别为a,b,c,且a=14,求边BC上的中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某牙膏厂生产的牙膏的年销售量(即该厂的年产量)x万支与年广告费用a万元(a≥0)满足$x=3-\frac{k}{a+1}$(k为常数),如果不进行广告宣传,则该牙膏的年销售量是1万支.已知2014年生产该牙膏的固定投入为8万元,每生产1万支该产品需要再投入16万元,厂家将每支牙膏的销售价格定为每支牙膏平均成本的$\frac{3}{2}$倍(产品成本包括固定投入和再投入两部分资金,不包括广告费用).
(1)将2014年该产品的利润y万元表示为年广告费用a万元的函数;
(产品的利润=销售收入-产品成本-广告费用)
(2)该厂家2014年的广告费用为多少万元时,厂家的利润最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知曲线$y=\frac{e}{x}$上一点P(1,e)处的切线分别交x轴、y轴于A,B两点,O为原点,则△OAB的面积为(  )
A.2eB.eC.e2D.2e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sin(π+α)=$\frac{3}{5}$且α是第三象限的角,则cos(α-2π)的值是(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.±$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,E,F,G分别是四面体ABCD的棱BC、CD、DA的中点,则此四面体与过E,F,G的截面平行的棱的条数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+$\frac{1}{x}$.
(1)从区间(-2,2)内任取一个实数a,设事件A表示“函数y=f(x)-2在区间(0,+∞)上有两个不同的零点”,求事件A发生的概率;
(2)若连续掷两次一颗均匀的骰子(骰子六个面上标注的点数分别为1,2,3,4,5,6)得到的点数分别为a和b,记事件B表示“f(x)>b在x∈(0,+∞)上恒成立”,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.向△ABC内任意投一点P,若△ABC面积为s,则△PBC的面积小于等于$\frac{s}{2}$的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足${a_{n+1}}-{a_n}=4n+1({n∈{N^*}})$,且a1=1.
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{{4n({n+1})}}{{{a_n}{a_{n+1}}}}({n∈{N^*}})$,设数列{bn}的前n项和Sn,证明$\frac{4}{3}≤{S_n}<2$.

查看答案和解析>>

同步练习册答案