精英家教网 > 高中数学 > 题目详情
8.在△ABC中,内角A,B,C满足$2\sqrt{3}sinAsinB=5sinC$且$cosB=\frac{11}{14}$.
(1)求角A的大小;
(2)若内角A,B,C的对边分别为a,b,c,且a=14,求边BC上的中线AD的长.

分析 (1)由已知利用同角三角函数基本关系式可求sinB,代入已知等式可得3sinA=7sinC,由三角函数恒等变换的应用可求tanA,结合范围0<A<π,可求A的值.
(2)由(1)可求sinA,sinC,由正弦定理解得c,b的值,进而在△ABD中,由余弦定理可求AD的值.

解答 解:(1)在△ABC中,因为$cosB=\frac{11}{14}$,
所以$sinB=\frac{{5\sqrt{3}}}{14}$.
代入$2\sqrt{3}sinAsinB=5sinC$,化简可得3sinA=7sinC.
因为A+B+C=π,
所以sinC=sin(π-A-B)=sin(A+B)=sinAcosB+cosAsinB,
所以3sinA=7sinAcosB+7cosAsinB,化简得$tanA=-\sqrt{3}$.
因为0<A<π,
所以A=$\frac{2π}{3}$.
(2)因为$A=\frac{2π}{3}$,
所以$sinA=\frac{{\sqrt{3}}}{2},sinC=\frac{{3\sqrt{3}}}{14}$.
在△ABC中,由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,且a=14,
得:c=6,b=10,
在△ABD中,由余弦定理得:$A{D^2}=A{B^2}+B{D^2}-2AB×BD×cosB=36+49-2×6×7×\frac{11}{14}=19$,
所以:$AD=\sqrt{19}$.

点评 本题主要考查了同角三角函数基本关系式,三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆E的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),E上动点P到右焦点F距离的最大值为3,且离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过F任作直线l交椭圆E于M、N两点,且线段MN垂直平分线交x轴于一点D.问是否存在常数λ,使|FD|=λ|MN|.若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\vec a=({1,2}),\vec b=({-2,y})$,且$\vec a∥\vec b$.求:
(Ⅰ)$\vec a•\vec b$;
(Ⅱ)$2\vec a-\vec b$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)(1-3i)-(2+5i)+(-4+9i);
(2)(1+2i)÷(3-4i)
(3)(1+2i)(3-4i)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知平面内三个向量:$\overrightarrow a=(3,2),\overrightarrow b=(-1,2),\overrightarrow c=(4,1)$.
(Ⅰ)若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow b-\overrightarrow a)$,求实数k的值;
(Ⅱ)设$\overrightarrow d=(x,y)$,且满足$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow d-\overrightarrow c)$,$|\overrightarrow d-\overrightarrow c|=\sqrt{5}$,求$\overrightarrow d$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.
(1)求证:DE∥平面PBC;
(2)求PB与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知盒子中有4个红球,2个白球,从中一次抓三个球,
(1)求没有抓到白球的概率;
(2)记抓到球中的红球数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}中,${a_1}=\frac{5}{3},{a_2}=\frac{7}{3}$,且${a_{n+2}}=\frac{5}{3}{a_{n+1}}-\frac{2}{3}{a_n}\begin{array}{l},{n∈{N^*}}\end{array}$.
(1)求a3,a4
(2)求数列{an}的通项an
(3)若数列{bn}的前n项和${S_n}=\frac{1}{3}{n^2}$,求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{x,x≤0}\\{{x}^{2}-x,x>0}\end{array}\right.$,若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为(  )
A.$({-\frac{1}{4},0})$B.$({-\frac{1}{4},0}]$C.$[{-\frac{1}{2},1}]$D.$[{-\frac{1}{2},1})$

查看答案和解析>>

同步练习册答案