精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)的导函数为f'(x),对一切的x∈R都有f'(x)>f(x)成立,对任意正数a,b,若a<b,则有(  )
A.bf(lna)<af(lnb)B.bf(lna)=af(lnb)
C.bf(lna)>af(lnb)D.bf(lna)与af(lnb)的大小不确定

分析 由题意可知f'(x)-f(x)>0,构造辅助函数,求导,则g(x)在(-∞,+∞)上单调递增,由lna<lnb,则g(lna)<g(lnb),即可求得bf(lna)<af(lnb).

解答 解:由f'(x)>f(x),即f'(x)-f(x)>0,
设g(x)=$\frac{f(x)}{{e}^{x}}$,g(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$>0,
∴g(x)在(-∞,+∞)上单调递增,
由任意正数a,b,且a<b,则lna<lnb,
∴g(lna)<g(lnb),则$\frac{f(lna)}{a}$<$\frac{f(lnb)}{b}$,
∴bf(lna)<af(lnb),
故选A.

点评 本题考查导数的综合应用,考查利用导数研究函数的单调性,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知$|{\vec b}|=3$,$\vec a$在$\vec b$方向上的投影为$\frac{3}{2}$,则$\vec a$•$\vec b$=(  )
A.2B.$\frac{9}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(1)求四棱锥P-BCD外接球(即P,B,C,D四点都在球面上)的表面积;
(2)求证:平面FGH⊥平面AEB;
(3)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC中,c是a与b的等差中项,sinA,sinB,sinC依次为一等比数列的前n项,前2n项,前3n项的和,则cosC的值为(  )
A.$\frac{1}{2}$B.$\frac{9}{16}$C.$\frac{11}{16}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=2,an+1=4an+3,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某牙膏厂生产的牙膏的年销售量(即该厂的年产量)x万支与年广告费用a万元(a≥0)满足$x=3-\frac{k}{a+1}$(k为常数),如果不进行广告宣传,则该牙膏的年销售量是1万支.已知2014年生产该牙膏的固定投入为8万元,每生产1万支该产品需要再投入16万元,厂家将每支牙膏的销售价格定为每支牙膏平均成本的$\frac{3}{2}$倍(产品成本包括固定投入和再投入两部分资金,不包括广告费用).
(1)将2014年该产品的利润y万元表示为年广告费用a万元的函数;
(产品的利润=销售收入-产品成本-广告费用)
(2)该厂家2014年的广告费用为多少万元时,厂家的利润最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设x=m和x=n是函数f(x)=lnx+$\frac{1}{2}$x2-(a+2)x的两个极值点,其中m<n,a∈R.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程
(Ⅱ) 求f(m)+f(n)的取值范围;
(Ⅲ)若a>$\sqrt{e}$+$\frac{1}{\sqrt{e}}$-2,求f(n)-f(m)的最大值(e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sin(π+α)=$\frac{3}{5}$且α是第三象限的角,则cos(α-2π)的值是(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.±$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表:
年龄(单位:岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数31012721
(Ⅰ)若以“年龄45岁为分界点”.由以上统计数据完成下面的2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关:
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成
不赞成
合计
(Ⅱ)若从年龄在,总有g(x1)<f (x2)成立,其中e=2.71828…是自然对数的底数.

查看答案和解析>>

同步练习册答案