| A. | $\frac{1}{2}$ | B. | $\frac{9}{16}$ | C. | $\frac{11}{16}$ | D. | $\frac{13}{16}$ |
分析 运用等差数列和等比数列的性质,结合正弦定理,可得a,b,c的关系,再由余弦定理计算即可得到所求值.
解答 解:c是a与b的等差中项,
可得a+b=2c,①
sinA,sinB,sinC依次为一等比数列的前n项,前2n项,前3n项的和,
由等比数列的和的性质,可得
sinA,sinB-sinA,sinC-sinB成等比数列,
可得sinA(sinC-sinB)=(sinB-sinA)2,
由正弦定理可得sinA=$\frac{a}{2R}$,sinB=$\frac{b}{2R}$,sinC=$\frac{c}{2R}$,
代入,化简可得a(c-b)=(b-a)2,②
由①②可得
a(a+b-2b)=2(b-a)2,
化简可得a=b或a=2b,
若a=b,则a=b=c,由等比数列各项均不为0,可得a≠b;
则a=2b,c=$\frac{3}{2}$b,
即有cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{4{b}^{2}+{b}^{2}-\frac{9}{4}{b}^{2}}{2•2b•b}$=$\frac{11}{16}$.
故选:C.
点评 本题考查等差数列和等比数列中项的性质,考查正弦定理和余弦定理的运用,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | bf(lna)<af(lnb) | B. | bf(lna)=af(lnb) | ||
| C. | bf(lna)>af(lnb) | D. | bf(lna)与af(lnb)的大小不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com