精英家教网 > 高中数学 > 题目详情
14.数列{an}满足a1=1,且an+1=a1+an+n(n∈N*),则$\frac{1}{a_1}+\frac{1}{a_2}+$…$+\frac{1}{{{a_{2016}}}}$等于(  )
A.$\frac{4032}{2017}$B.$\frac{4028}{2015}$C.$\frac{2015}{2016}$D.$\frac{2014}{2015}$

分析 an+1=a1+an+n(n∈N*),a1=1.可得an+1-an=n+1,利用“累加求和”方法可得an=$\frac{n(n+1)}{2}$.可得$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.即可得出.

解答 解:∵an+1=a1+an+n(n∈N*),a1=1.
∴an+1-an=n+1,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=n+(n-1)+…+2+1=$\frac{n(n+1)}{2}$.
∴$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
则$\frac{1}{a_1}+\frac{1}{a_2}+$…$+\frac{1}{{{a_{2016}}}}$=$2[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2016}-\frac{1}{2017})]$
=2$(1-\frac{1}{2017})$=$\frac{4032}{2017}$.
故选:A.

点评 本题考查了等差数列的通项公式与求和公式、“累加求和”方法与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若a1=1,对任意的n∈N*,都有an>0,且nan+12-(2n-1)an+1an-2an2=0设M(x)表示整数x的个位数字,则M(a2017)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{an}为“斐波那契”数列,Sn为数列{an}的前n项和,则
(Ⅰ)S7=33;      
(Ⅱ)若a2017=m,则S2015=m-1.(用m表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2-2x<0},B={y|y=|x|+1,x∈R},则A∩∁RB=(  )
A.(0,2)B.[1,2)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,则输出的结果是(  )
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)是定义在R上的奇函数,且f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x≥0}\\{g(x),x<0}\end{array}\right.$,则g(-8)=(  )
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,∠AED=90°,且平面ABCD⊥平面ADEF,AF=FE=AB=$\frac{1}{2}$AD=2,点G为AC的中点.
(Ⅰ)求证:平面BAE⊥平面DCE;
(Ⅱ)求三棱锥B-AEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直角三角形△ABC中,若∠ACB=90°,AC=3,$\overrightarrow{BD}$=2$\overrightarrow{DA}$,$\overrightarrow{AB}$=3$\overrightarrow{BE}$,则 $\overrightarrow{CD}$•$\overrightarrow{CA}$+$\overrightarrow{CE}$•$\overrightarrow{CA}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的公差不等于零,前n项和为Sn,a5=9且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{{{a_n}-1}}{{{2^{a_n}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案