精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}{|{e}^{x}-3|,(x≥0)}\\{|x+3|-1,(x<0)}\end{array}\right.$,则关于x的方程f(x)=f(x-2)解的个数为(  )
A.1B.2C.3D.4

分析 由题意可得本题即求函数y=f(x)的图象和y=f(x-2)的图象的交点个数,数形结合可得结论.

解答 解:由函数f(x)=$\left\{\begin{array}{l}{|{e}^{x}-3|,(x≥0)}\\{|x+3|-1,(x<0)}\end{array}\right.$,可得f(x-2)=$\left\{\begin{array}{l}{{|e}^{x-2}-3|,x≥2}\\{|x+1|,x<2}\end{array}\right.$,
关于x的方程f(x)=f(x-2)解的个数,即函数y=f(x)的图象和y=f(x-2)的图象的交点个数,
如图所示:

数形结合可得函数y=f(x)的图象和y=f(x-2)的图象的交点个数为3,
故选:C.

点评 本题主要考查函数的图象特征,方程根的存在性以及个数判断,体现了数形结合、转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在三角形ABC中,D为底边BC的中点,M为AD上的任一点,过M点任作一直线l分别交边AB、AC与E,F(E,F不与端点重合),且$\overrightarrow{AE}=m\overrightarrow{AB},\overrightarrow{AF}=n\overrightarrow{AC}$,$\overrightarrow{AM}=k\overrightarrow{AD}$,则m,n,k满足的关系是(  )
A.$\frac{1}{m}+\frac{1}{n}=\frac{2}{k}$B.$\frac{1}{m}+\frac{1}{n}=\frac{k}{2}$C.$\frac{1}{m}+\frac{1}{n}=\frac{1}{k}$D.m+n=k

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l的方程为Ax+By+C=0,若l过原点和第二、四象限,则必有(  )
A.$\left\{\begin{array}{l}{C=0}\\{B>0}\end{array}\right.$B.$\left\{\begin{array}{l}{C=0}\\{B>0}\\{A>0}\end{array}\right.$C.$\left\{\begin{array}{l}{C=0}\\{AB<0}\end{array}\right.$D.$\left\{\begin{array}{l}{C=0}\\{AB>0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(sinx+cosx)2+$\sqrt{3}({sin^2}x-{cos^2}x)$,$x∈[{\frac{π}{4},\frac{π}{2}}]$,当x=α时,f(x)有最大值.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,a=2,A=α-$\frac{π}{12}$,且sinBsinC=sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:实数a满足x的方程4x2-2ax+2a+5=0有两个不等实根,命题q:实数a∈{x|x2-2x+1-m2≤0且m>0},若¬p是¬q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{\frac{a}{2{x}^{2}},(0<|x|≤1)}\\{{a}^{x},(|x|>1)}\end{array}\right.$(a>0,a≠1),且f(1)=f(2),则f(log46)=$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,长轴长为2$\sqrt{6}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F为椭圆C的右焦点,T为直线x=t(t∈R,t≠2)上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.
(ⅰ)若OT平分线段PQ(其中O为坐标原点),求t的值;
(ⅱ)在(ⅰ)的条件下,当$\frac{|TF|}{|PQ|}$最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,公比q>1,a1+am=17,a2am-1=16,前m项和Sm=31,则项数m等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中,正确的个数是(  )
①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;
②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;
③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;
④两条相交直线,其中一条与一个平面平行,则另一条一定与这个平面平行.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案