精英家教网 > 高中数学 > 题目详情
12.在三角形ABC中,D为底边BC的中点,M为AD上的任一点,过M点任作一直线l分别交边AB、AC与E,F(E,F不与端点重合),且$\overrightarrow{AE}=m\overrightarrow{AB},\overrightarrow{AF}=n\overrightarrow{AC}$,$\overrightarrow{AM}=k\overrightarrow{AD}$,则m,n,k满足的关系是(  )
A.$\frac{1}{m}+\frac{1}{n}=\frac{2}{k}$B.$\frac{1}{m}+\frac{1}{n}=\frac{k}{2}$C.$\frac{1}{m}+\frac{1}{n}=\frac{1}{k}$D.m+n=k

分析 由题意,$\overrightarrow{AM}$=k$\overrightarrow{AD}$=$\frac{k}{2}$($\overrightarrow{AB}$+$\overline{AC}$)=$\frac{k}{2m}$•$\overrightarrow{AE}$+$\frac{k}{2n}$•$\overrightarrow{AF}$,利用E,M,F三点共线,可得结论.

解答 解:由题意,$\overrightarrow{AM}$=k$\overrightarrow{AD}$=$\frac{k}{2}$($\overrightarrow{AB}$+$\overline{AC}$)=$\frac{k}{2m}$•$\overrightarrow{AE}$+$\frac{k}{2n}$•$\overrightarrow{AF}$,
∵E,M,F三点共线,
∴$\frac{k}{2m}$+$\frac{k}{2n}$=1,
∴$\frac{1}{m}+\frac{1}{n}=\frac{2}{k}$,
故选:A.

点评 本题考查向量在几何中的应用,考查三点共线结论的运用,考查学生的计算能力,正确替换是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若复数z满足(z-3)(2-i)=5(i为虚数单位),则z为(  )
A.2-iB.2+iC.5-iD.5+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一个数列的第n项an=[a1+(n-1)d]qn-1(q≠0),即an是一个等差数列的第n项与一个等比数列的第n的乘积,这样的数列叫做“等差×等比”数列.
(1)试判断数列an=35-2n和bn=(-2)n是否为“等差×等比”数列,如果是“等差×等比”数列,求出a1,d,q或b1,d,q的值,如果不是“等差×等比”数列,请说明理由;
(2)若{cn}是“等差×等比”数列,且c1=2,c2=-$\frac{5}{2}$,c3=2,求cn
(3)若dn=(35-2n)(-2)n-1,求dndn+1的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.根据图中数据,可得该几何体的表面积是12π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),直线l与椭圆C有唯一公共点M,当点M的坐标为($\sqrt{3}$,$\frac{1}{2}$)时,l的方程为$\sqrt{3}$x+2y-4=0.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l的斜率为k,M在椭圆C上移动时,作OH⊥l于H,(O为坐标原点),当|OH|=$\frac{4}{5}$|OM|时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C上任意一点P做椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;
(Ⅲ)若切线MP与直线x=-2交于点N,求证:$\frac{{|N{F_1}|}}{{|M{F_1}|}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,-2),点C满足$\overrightarrow{OC}$=α$\overrightarrow{OA}$+β$\overrightarrow{OB}$,其中α,β∈R,且α-2β=1.
(1)求点C的轨迹方程;
(2)设点C的轨迹与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0)交于两点M,N,且以MN为直径的圆过原点,求证:$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$为定值;
(3)在(2)的条件下,若椭圆的离心率不大于$\frac{\sqrt{3}}{2}$,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.关于x的不等式$\sqrt{x}$>ax+$\frac{3}{2}$的解为{x|2<x<b},求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{|{e}^{x}-3|,(x≥0)}\\{|x+3|-1,(x<0)}\end{array}\right.$,则关于x的方程f(x)=f(x-2)解的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案