精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=sin2x+$\sqrt{3}$sinx•cosx-$\frac{1}{2}$.
(1)写出f(x)的最小正周期;
(2)f(x)的图象可由y=sinx的图象经过怎样的变换得到?

分析 (1)由条件利用三角恒等变换,求得f(x)=sin(2x-$\frac{π}{6}$),再利用函数y=Asin(ωx+φ)的周期性,得出结论.
(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:(1)函数f(x)=sin2x+$\sqrt{3}$sinx•cosx-$\frac{1}{2}$=$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$=sin(2x-$\frac{π}{6}$),
故它的最小正周期为$\frac{2π}{2}$=π.
(2)把y=sinx的图象向右平移$\frac{π}{6}$个单位,可得函数y=sin(x-$\frac{π}{6}$)的图象;
再把所得图象上点的横坐标变为原来的$\frac{1}{2}$倍,可得f(x)=sin(2x-$\frac{π}{6}$)的图象.

点评 本题主要考查三角恒等变换、函数y=Asin(ωx+φ)的周期性、函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足条件 $\left\{\begin{array}{l}x≥0\\ 4x+3y≤4\\ y≥0\end{array}$,则 z=$\frac{x+y+1}{x}$最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥a({x-3}).\end{array}\right.$,若z=2x+y的最小值为0,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\frac{ai}{2-i}$+1=2i(i是虚数单位),则实数a=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴建立极坐标系.已知直线l的参数方程为$\left\{\begin{array}{l}{x=5-at}\\{y=-1-t}\end{array}\right.$(t为参数),圆C的极坐标系方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),若圆C关于直线l对称,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有5个英语字母a、b、c、d、e排成一行,则a不排在正中间的位置,且b不排在两端的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求过点A(1,3)与B(4,2),且圆心在直线y=2x上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在矩形ABCD中,AB=4,BC=3,E为DC的中点,沿AE将△AED折起,使二面角D-AE-B为60.
(1)求DE与平面AC所成角的大小;
(2)求二面角D-EC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,实数k为大于零的常数,函数f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函数f(x)的最大值为$\frac{{\sqrt{2}-1}}{2}$.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C所对的边,若$\frac{π}{2}$<A<π,f(A)=0,且a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的最小值.

查看答案和解析>>

同步练习册答案