精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,实数k为大于零的常数,函数f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函数f(x)的最大值为$\frac{{\sqrt{2}-1}}{2}$.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C所对的边,若$\frac{π}{2}$<A<π,f(A)=0,且a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的最小值.

分析 (Ⅰ)通过斜率的数量积以及两角和与差的三角函数化简函数的解析式,然后通过解函数的最大值,求k的值;
(Ⅱ)利用f(A)=0,得到A的值,然后利用余弦定理通过a=2$\sqrt{10}$得到bc范围,然后求$\overrightarrow{AB}•\overrightarrow{AC}$的最小值.

解答 (本小题满分12分)
解:(Ⅰ)由已知$f(x)=\overrightarrow a•\overrightarrow b=(ksin\frac{x}{3},co{s^2}\frac{x}{3})•(cos\frac{x}{3},-k)$=$ksin\frac{x}{3}cos\frac{x}{3}-kco{s^2}\frac{x}{3}=\frac{1}{2}ksin\frac{2x}{3}-k\frac{{1+cos\frac{2x}{3}}}{2}=\frac{k}{2}(sin\frac{2x}{3}-cos\frac{2x}{3})-\frac{k}{2}$…(2分)=$\frac{{\sqrt{2}k}}{2}(\frac{{\sqrt{2}}}{2}sin\frac{2x}{3}-\frac{{\sqrt{2}}}{2}cos\frac{2x}{3})-\frac{k}{2}=\frac{{\sqrt{2}k}}{2}sin(\frac{2x}{3}-\frac{π}{4})-\frac{k}{2}$…(5分)
因为x∈R,所以f(x)的最大值为$\frac{{(\sqrt{2}-1)k}}{2}=\frac{{\sqrt{2}-1}}{2}$,则k=1…(6分)
(Ⅱ)由(Ⅰ)知,$f(x)=\frac{{\sqrt{2}}}{2}sin(\frac{2x}{3}-\frac{π}{4})-\frac{1}{2}$,所以$f(A)=\frac{{\sqrt{2}}}{2}sin(\frac{2A}{3}-\frac{π}{4})-\frac{1}{2}=0$
化简得$sin(\frac{2A}{3}-\frac{π}{4})=\frac{{\sqrt{2}}}{2}$
因为$\frac{π}{2}<A<π$,所以$\frac{π}{12}<\frac{2A}{3}-\frac{π}{4}<\frac{5π}{12}$
则$\frac{2A}{3}-\frac{π}{4}=\frac{π}{4}$,解得$A=\frac{3π}{4}$…(8分)
因为$cosA=-\frac{{\sqrt{2}}}{2}=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{{b^2}+{c^2}-40}}{2bc}$,所以${b^2}+{c^2}+\sqrt{2}bc=40$
则${b^2}+{c^2}+\sqrt{2}bc=40≥2bc+\sqrt{2}bc$,所以$bc≤\frac{40}{{2+\sqrt{2}}}=20(2-\sqrt{2})$…(10分)
则$\overrightarrow{AB}•\overrightarrow{AC}=|{\overrightarrow{AB}}||{\overrightarrow{AC}}|cos\frac{3π}{4}=-\frac{{\sqrt{2}}}{2}bc≥20(1-\sqrt{2})$
所以$\overrightarrow{AB}•\overrightarrow{AC}$的最小值为$20(1-\sqrt{2})$…(12分)

点评 本题考查斜率的数量积,余弦定理的应用,三角函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin2x+$\sqrt{3}$sinx•cosx-$\frac{1}{2}$.
(1)写出f(x)的最小正周期;
(2)f(x)的图象可由y=sinx的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若f(x)=x2+px+q满足f(1)=f(2)=0,则f(4)的值是(  )
A.5B.-5C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设x,y∈(-2,2),且xy=-1,则函数$\frac{4}{4-{x}^{2}}$+$\frac{9}{9-{y}^{2}}$的最小值为$\frac{12}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等比数列{an}的第5项是二项式(x+$\frac{1}{x}$)4展开式的常数项,则a3•a7(  )
A.5B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等比数列{an}中,a2a10=9,则a5+a7有最小值6,最大值-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设平面区域D是由双曲线y2-$\frac{{x}^{2}}{4}$=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形区域(含边界),若点(x,y)∈D,则$\frac{2y-x+1}{x+1}$的取值范围是(  )
A.[-1,$\frac{1}{3}$]B.[-1,1]C.[0,$\frac{1}{3}$]D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC中,角A,B,C所对的边分别为a,b,c,设△ABC的面积为S,且2$\sqrt{3}$S-$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,c=2.
(Ⅰ)求角A的大小;
(Ⅱ)若a2+b2-c2=$\frac{6}{5}$ab,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的奇函数f(x)满足f(x+2)=f(-x),当0≤x≤1时,f(x)=2x,则f(2015)等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步练习册答案