精英家教网 > 高中数学 > 题目详情
16.(1)设复数z=(m-1)+(m+2)i和复平面内点Z对应,若点Z在直线2x-y=0上,求实数m的值.
(2)已知z=2+i,计算$\frac{{{z^2}-4z+8}}{z-1}$.

分析 (1)根据复数对应的点在直线2x-y=0上得到m的方程解之;
(2)将z代入,化简计算.

解答 解:(1)复数z=(m-1)+(m+2)i和复平面内点Z对应,若点Z在直线2x-y=0上,
所以2(m-1)-(m+2)=0
解得m=4.
(2)z=2+i,所以$\frac{{{z^2}-4z+8}}{z-1}$=$\frac{(2+i)^{2}-4(2+i)+8}{2+i-1}$=$\frac{3}{1+i}$=$\frac{3(1-i)}{(1+i)(1-i)}$=$\frac{3-3i}{2}$=$\frac{3}{2}-\frac{3}{2}i$.

点评 本题考查了复数的几何意义以及复数的混合运算;考查学生的运算能力;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设扇形的半径长为2cm,面积为4cm2,则扇形的圆心角的弧度数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点为F,以F为圆心的圆与双曲线的两条渐近线分别相切于 A、B两点,且|AB|=$\sqrt{3}$b,则该双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{4}$C.$2\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列表:
文化程度与月收入列联表(单位:人)
月收入2000元以下月收入2000元及以上总计
高中文化以上104555
高中文化及以下203050
总计3075105
由上表中数据计算得K2=$\frac{{105×{{({10×30-20×45})}^2}}}{55×50×30×75}$≈6.109,请根据下表,估计有多大把握认为“文化程度与月收入有关系”(  )
A.1%B.99%C.2.5%D.97.5%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}},\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}},\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}}…$,若$\sqrt{6+\frac{a}{b}}=6\sqrt{\frac{a}{b}}$(a,b均为实数),请推测a=6,b=35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在△ABC中,已知AB=4,AC=6,∠BAC=60°,点D,E分别在边AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=3$\overrightarrow{AE}$,点F为DE中点,则$\overrightarrow{BF}$•$\overrightarrow{DE}$的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.当实数m为何值时,复数z=(m2-5m+6)+(m2-3m)i是:
(1)实数;       
(2)纯虚数;   
(3)复数z在一三象限平分线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.y=$\frac{{x}^{2}}{x+3}$的导数是(  )
A.$\frac{{x}^{2}-6x}{(x+3)^{2}}$B.$\frac{{x}^{2}+6x}{x+3}$C.$\frac{{x}^{2}}{(x+3)^{2}}$D.$\frac{{x}^{2}+6x}{(x+3)^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点Q(2,0)和点P(2cosα,2sinα+2),α∈[0,2π).线段PQ的中点为M.
(Ⅰ)求点M的轨迹的参数方程;
(Ⅱ)设点P的轨迹与点M的轨迹交于A,B两点,求△QAB的面积.

查看答案和解析>>

同步练习册答案