精英家教网 > 高中数学 > 题目详情
1.一个几何体的三视图如图所示,其中俯视图为正方形,则该几何体最大的侧面的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 判断几何体的图形,利用三视图的数据求解最大侧面面积即可.

解答 解:由三视图可知几何体是一条侧棱与底面垂直,底面是正方形,四棱锥的高为2,底面正方形的对角线的长为2,
四棱锥的4个侧面面积分别为:$\frac{1}{2}×\sqrt{2}×2$=$\sqrt{2}$;$\frac{1}{2}×\sqrt{2}×2$=$\sqrt{2}$;$\frac{1}{2}×\sqrt{2}×\sqrt{4+2}$=$\sqrt{3}$;$\frac{1}{2}×\sqrt{2}×\sqrt{4+2}$=$\sqrt{3}$.
最大侧面面积为:$\sqrt{3}$.
故选:C.

点评 本题考查三视图求解几何体的侧面面积,考查数形结合以及空间想象能力计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若y=sinxsin(x+$\frac{π}{3}$+φ)是一个奇函数,则φ可能的取值是(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设Tn为数列{an}的前n项之积,即Tn=a1a2a3…an-1an,若a1=2,$\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1(n∈{N^*},n≥2)$,当Tn=11时,n的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2-x)=(x-1)2,且当x≤1时,恒有f'(x)+2<x.若$f(m)-f({1-m})≥\frac{3}{2}-3m$,则实数m的取值范围是(  )
A.(-∞,1]B.$({-\frac{1}{3},1}]$C.[1,+∞)D.$({-∞,\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示(网格线中,每个小正方形的边长为1),则该几何体的体积为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图.在△ABC中,D是BC的中点,E、F是AD上的两个三等分点,$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BF}$•$\overrightarrow{CF}$=-1,则$\overrightarrow{BE}$•$\overrightarrow{CE}$的值是(  )
A.4B.8C.$\frac{7}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax2+bx,若f(a)=8,则f(-a)=8-2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在△AOB中,∠AOB=$\frac{3π}{4}$,OA=6,M为边AB上一点,M到边OA,OB的距离分别为2,2$\sqrt{2}$,则AB的长为6$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,已知sin(A+B)=2sinAcosB,那么△ABC一定是(  )
A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

同步练习册答案