精英家教网 > 高中数学 > 题目详情
12.设Tn为数列{an}的前n项之积,即Tn=a1a2a3…an-1an,若a1=2,$\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1(n∈{N^*},n≥2)$,当Tn=11时,n的值为10.

分析 由题意可得数列{$\frac{1}{{a}_{n}-1}$}是以$\frac{1}{{a}_{1}-1}$为首项,以1为公差的等差数列,写出通项公式,求出an,再写出Tn,令Tn=11求得n的值.

解答 解:由a1=2,$\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1(n∈{N^*},n≥2)$,
可得数列{$\frac{1}{{a}_{n}-1}$}是以$\frac{1}{{a}_{1}-1}$为首项,以1为公差的等差数列,
∴$\frac{1}{{a}_{n}-1}$=1+(n-1)•1=n,
∴an=1+$\frac{1}{n}$=$\frac{n+1}{n}$,
∴Tn=a1a2a3…an-1an=2•$\frac{3}{2}$•$\frac{4}{3}$…$\frac{n+1}{n}$=n+1,
由Tn=n+1=11,得n=10.
故答案为:10.

点评 本题考查了数列递推式,以及累积法求数列通项公式的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知f(x)=ex,g(x)=$\left\{\begin{array}{l}{\sqrt{1-(x+2)^{2}},-3≤x≤-1}\\{2g(x-2),-1<x≤1}\end{array}\right.$,则在区间[-3,1]上的函数y=f(x)-g(x)的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某同学在研究性学习中,关于三角形与三角函数知识的应用(约定三内角A、B、C所对的边分别是a,b,c)得出如下一些结论:
(1)若△ABC是钝角三角形,则tanA+tanB+tanC>0;
(2)若△ABC是锐角三角形,则cosA+cosB>sinA+sinB;
(3)在三角形△ABC中,若A<B,则cos(sinA)<cos(tanB)
(4)在△ABC中,若$sinB=\frac{2}{5},tanC=\frac{3}{4}$,则A>C>B
其中错误命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算下列式子:
(1)(-2-4i)-(-2+i)+(1+7i);
(2)(1+i)(2+i)(3+i);
(3)$\frac{3+i}{2+i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+ccosB=asinA,边BC上的高为h.
(1)求角A的大小;
(2)求$\frac{a}{h}$+tanB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$x∈({0,\frac{π}{2}})$,p:sinx<x,q:sinx<x2,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=lg(|x|-1)的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,其中俯视图为正方形,则该几何体最大的侧面的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=lg(tanx-1)+\sqrt{9-{x^2}}$,则f(x)的定义域是(-$\frac{3π}{4}$,-$\frac{π}{2}$)∪($\frac{π}{4}$,$\frac{π}{2}$).

查看答案和解析>>

同步练习册答案