分析 根据三角函数以及二次根式的性质建立不等关系,解正切函数的不等式即可求出所求.
解答 解:∵函数y=lg(tanx-1)+$\sqrt{9{-x}^{2}}$,
∴tanx-1>0,且9-x2≥0,
∴$\left\{\begin{array}{l}{kπ+\frac{π}{4}<x<kπ+\frac{π}{2}}\\{-3≤x≤3}\end{array}\right.$,
∴x∈(-$\frac{3π}{4}$,-$\frac{π}{2}$)∪($\frac{π}{4}$,$\frac{π}{2}$)
故答案为:(-$\frac{3π}{4}$,-$\frac{π}{2}$)∪($\frac{π}{4}$,$\frac{π}{2}$).
点评 本题以对数函数的定义域的求解为载体,重点考查了三角不等式的求解,属于中档试题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4立方丈 | B. | 5立方丈 | C. | 6立方丈 | D. | 8立方丈 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰直角三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等边三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com