精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=lg(tanx-1)+\sqrt{9-{x^2}}$,则f(x)的定义域是(-$\frac{3π}{4}$,-$\frac{π}{2}$)∪($\frac{π}{4}$,$\frac{π}{2}$).

分析 根据三角函数以及二次根式的性质建立不等关系,解正切函数的不等式即可求出所求.

解答 解:∵函数y=lg(tanx-1)+$\sqrt{9{-x}^{2}}$,
∴tanx-1>0,且9-x2≥0,
∴$\left\{\begin{array}{l}{kπ+\frac{π}{4}<x<kπ+\frac{π}{2}}\\{-3≤x≤3}\end{array}\right.$,
∴x∈(-$\frac{3π}{4}$,-$\frac{π}{2}$)∪($\frac{π}{4}$,$\frac{π}{2}$)
故答案为:(-$\frac{3π}{4}$,-$\frac{π}{2}$)∪($\frac{π}{4}$,$\frac{π}{2}$).

点评 本题以对数函数的定义域的求解为载体,重点考查了三角不等式的求解,属于中档试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设Tn为数列{an}的前n项之积,即Tn=a1a2a3…an-1an,若a1=2,$\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1(n∈{N^*},n≥2)$,当Tn=11时,n的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax2+bx,若f(a)=8,则f(-a)=8-2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在△AOB中,∠AOB=$\frac{3π}{4}$,OA=6,M为边AB上一点,M到边OA,OB的距离分别为2,2$\sqrt{2}$,则AB的长为6$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,无宽,高1丈.现给出该楔体的三视图,其中网格纸上小正方形的边长为1丈,则该楔体的体积为(  )
A.4立方丈B.5立方丈C.6立方丈D.8立方丈

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$sinα=\frac{{\sqrt{10}}}{10}$,$sin(α-β)=-\frac{{\sqrt{5}}}{5}$,$α,β∈(0,\frac{π}{2})$,则β=(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有8件产品,其中一等品3件,二等品3件,三等品2件,从中任意抽取4件.
(1)没有一等品的不同抽法有多少种?
(2)一等品,二等品,三等品至少一件的不同抽法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,已知sin(A+B)=2sinAcosB,那么△ABC一定是(  )
A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,$C=\frac{π}{3}$.
(1)若△ABC的面积等于$\sqrt{3}$,求a,b;
(2)若sinC+sin(B-A)=2sin2A,证明:△ABC是直角三角形.

查看答案和解析>>

同步练习册答案