精英家教网 > 高中数学 > 题目详情
10.如图,在△AOB中,∠AOB=$\frac{3π}{4}$,OA=6,M为边AB上一点,M到边OA,OB的距离分别为2,2$\sqrt{2}$,则AB的长为6$\sqrt{5}$.

分析 利用面积法求出OB=6$\sqrt{2}$,再根据余弦定理即可求出

解答 解:如图所示,由题意可得MC=2$\sqrt{2}$,MD=2,且MC⊥OB,MD⊥OA,
∵S△AOB=S△MOB+S△AOM
∴$\frac{1}{2}$OA•OB•sin∠AOB=$\frac{1}{2}$OB•MC+$\frac{1}{2}$OA•MD,
即6×$\frac{\sqrt{2}}{2}$OB=2$\sqrt{2}$OB+6×2,
解得OB=6$\sqrt{2}$,
由余弦定理可得AB2=OB2+OA2-2OB•OA•cos∠AOB=72+36-2×6$\sqrt{2}$×6×(-$\frac{\sqrt{2}}{2}$)=180,
∴AB=6$\sqrt{5}$,
故答案为:6$\sqrt{5}$.

点评 本题考查了三角形的面积公式和余弦定理,考查了学生的运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.计算下列式子:
(1)(-2-4i)-(-2+i)+(1+7i);
(2)(1+i)(2+i)(3+i);
(3)$\frac{3+i}{2+i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,其中俯视图为正方形,则该几何体最大的侧面的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.甲、乙、丙三位同学同时参加M项体育比赛,每项比赛第一名、第二名、第三名得分分别为p1,p2,p3(p1>p2>p3,p1,p2,p3∈N*,比赛没有并列名次),比赛结果甲得22分,乙、丙都得9分,且乙有一项得第一名,则M的值为2,3,4,5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{2}+\frac{π}{2}$B.$1+\frac{π}{2}$C.1+πD.2+π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设各项均为正数的数列{an}的前n项和为Sn,且对任意的n∈N*,都有2$\sqrt{S_n}={a_n}$+1.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1an,求数列{bn}的前n项和Tn
(3)令cn=$\frac{1}{{\sqrt{{a_n}{S_{2n+1}}}+\sqrt{{a_{n+1}}{S_{2n-1}}}}}$,求$\sum_{i=1}^n{[{({\sqrt{2n+1}+1}){c_i}}]}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=lg(tanx-1)+\sqrt{9-{x^2}}$,则f(x)的定义域是(-$\frac{3π}{4}$,-$\frac{π}{2}$)∪($\frac{π}{4}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在复平面内,复数z=$\frac{2i}{1+i}$(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照 分成5组,制成如图所示频率分直方图.
(1)求图中x的值;
(2)已知满意度评分值在内的男生数与女生数的比为2:1,若在满意度评分值为的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案