精英家教网 > 高中数学 > 题目详情
6.如图.在△ABC中,D是BC的中点,E、F是AD上的两个三等分点,$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BF}$•$\overrightarrow{CF}$=-1,则$\overrightarrow{BE}$•$\overrightarrow{CE}$的值是(  )
A.4B.8C.$\frac{7}{8}$D.$\frac{3}{4}$

分析 把所用向量都用$\overrightarrow{BD}、\overrightarrow{DF}$表示,结合已知求出${\overrightarrow{BD}}^{2}、{\overrightarrow{DF}}^{2}$的值,则$\overrightarrow{BE}$•$\overrightarrow{CE}$的值可求.

解答 解:∵D是BC的中点,E,F是AD上的两个三等分点,
∴$\overrightarrow{BF}$=$\overrightarrow{BD}+\overrightarrow{DF}$,$\overrightarrow{CF}$=-$\overrightarrow{BD}+\overrightarrow{DF}$,$\overrightarrow{BA}$=$\overrightarrow{BD}$+3$\overrightarrow{DF}$,$\overrightarrow{CA}$=-$\overrightarrow{BD}+3\overrightarrow{DF}$,
∴$\overrightarrow{BF}•\overrightarrow{CF}$=${\overrightarrow{DF}}^{2}-{\overrightarrow{BD}}^{2}=-1$,
$\overrightarrow{BA}•\overrightarrow{CA}$=9${\overrightarrow{DF}}^{2}-{\overrightarrow{BD}}^{2}=4$,
∴${\overrightarrow{DF}}^{2}=\frac{5}{8}$,${\overrightarrow{BD}}^{2}=\frac{13}{8}$,
又∵$\overrightarrow{BE}=\overrightarrow{BD}+2\overrightarrow{DF}$,$\overrightarrow{CE}=-\overrightarrow{BD}+2\overrightarrow{DF}$,
∴$\overrightarrow{BE}•\overrightarrow{CE}$=4${\overrightarrow{DF}}^{2}-{\overrightarrow{BD}}^{2}=\frac{7}{8}$,
故选:C.

点评 本题考查平面向量的数量积运算,平面向量的线性运算,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{2π}{3}$$\frac{8π}{3}$
Asin(ωx+φ)030-30
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)令g(x)=f (x+$\frac{π}{3}$)-$\frac{1}{2}$,当x∈[-π,π]时,恒有不等式g(x)-a-3<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$x∈({0,\frac{π}{2}})$,p:sinx<x,q:sinx<x2,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正方体ABCD-A1B1C1D1的棱长为1,点E,F分别是棱D1C1,B1C1的中点,过E,F作一平面α,使得平面α∥平面AB1D1,则平面α截正方体的表面所得平面图形为(  )
A.三角形B.四边形C.五边形D.六边形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,其中俯视图为正方形,则该几何体最大的侧面的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为(  )
A.32πB.48πC.50πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.甲、乙、丙三位同学同时参加M项体育比赛,每项比赛第一名、第二名、第三名得分分别为p1,p2,p3(p1>p2>p3,p1,p2,p3∈N*,比赛没有并列名次),比赛结果甲得22分,乙、丙都得9分,且乙有一项得第一名,则M的值为2,3,4,5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设各项均为正数的数列{an}的前n项和为Sn,且对任意的n∈N*,都有2$\sqrt{S_n}={a_n}$+1.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1an,求数列{bn}的前n项和Tn
(3)令cn=$\frac{1}{{\sqrt{{a_n}{S_{2n+1}}}+\sqrt{{a_{n+1}}{S_{2n-1}}}}}$,求$\sum_{i=1}^n{[{({\sqrt{2n+1}+1}){c_i}}]}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}满足a3=7,a5+a7=26,若${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$(n∈N*),则数列{bn}的前10项和S10=$\frac{10}{69}$.

查看答案和解析>>

同步练习册答案