精英家教网 > 高中数学 > 题目详情
4.若y=sinxsin(x+$\frac{π}{3}$+φ)是一个奇函数,则φ可能的取值是(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{3}$

分析 把x=$\frac{2π}{3}$、$\frac{π}{6}$、$\frac{π}{2}$、$\frac{π}{3}$代入函数的解析式,检验可得结论.

解答 解:∵y=sinxsin(x+$\frac{π}{3}$+φ)是一个奇函数,把x=$\frac{2π}{3}$、$\frac{π}{6}$、$\frac{π}{2}$、$\frac{π}{3}$代入,
只有x=$\frac{π}{6}$满足条件,
故选:B.

点评 本题主要考查三角函数的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知{an}为等差数列,a1+a3+a5=9,a2+a4+a6=15,则a3+a4=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=ex,g(x)=$\left\{\begin{array}{l}{\sqrt{1-(x+2)^{2}},-3≤x≤-1}\\{2g(x-2),-1<x≤1}\end{array}\right.$,则在区间[-3,1]上的函数y=f(x)-g(x)的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数$z=\frac{2}{1-i}$,则z-|z|对应的点位于第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19..已知数列{an}的通项公式为an=n•($\frac{3}{4}$)n,则数列{an}的最大项是(  )
A.a1B.a3C.a5D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{2π}{3}$$\frac{8π}{3}$
Asin(ωx+φ)030-30
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)令g(x)=f (x+$\frac{π}{3}$)-$\frac{1}{2}$,当x∈[-π,π]时,恒有不等式g(x)-a-3<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某同学在研究性学习中,关于三角形与三角函数知识的应用(约定三内角A、B、C所对的边分别是a,b,c)得出如下一些结论:
(1)若△ABC是钝角三角形,则tanA+tanB+tanC>0;
(2)若△ABC是锐角三角形,则cosA+cosB>sinA+sinB;
(3)在三角形△ABC中,若A<B,则cos(sinA)<cos(tanB)
(4)在△ABC中,若$sinB=\frac{2}{5},tanC=\frac{3}{4}$,则A>C>B
其中错误命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算下列式子:
(1)(-2-4i)-(-2+i)+(1+7i);
(2)(1+i)(2+i)(3+i);
(3)$\frac{3+i}{2+i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,其中俯视图为正方形,则该几何体最大的侧面的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案