精英家教网 > 高中数学 > 题目详情
12.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则$\frac{2b+3a}{ab}$的最小值为(  )
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

分析 由约束条件作差可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数可得2a+3b=6,然后利用基本不等式求$\frac{2b+3a}{ab}$的最小值.

解答 解:由约束条件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$作差可行域如图,

联立$\left\{\begin{array}{l}{x-y+2=0}\\{3x-y-6=0}\end{array}\right.$,解得A(4,6),
化目标函数z=ax+by(a>0,b>0)为y=-$\frac{a}{b}x+\frac{z}{b}$,
由图可知,当直线y=-$\frac{a}{b}x+\frac{z}{b}$过A时,直线在y轴上的截距最大,z有最大值为4a+6b=12.
则2a+3b=6.
∴$\frac{2b+3a}{ab}$=$\frac{2}{a}+\frac{3}{b}$=($\frac{2}{a}+\frac{3}{b}$)($\frac{a}{3}+\frac{b}{2}$)=$\frac{2}{3}+\frac{3}{2}+\frac{b}{a}+\frac{a}{b}$$≥\frac{13}{6}$+2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=$\frac{13}{6}+\frac{12}{6}=\frac{25}{6}$.
当且仅当a=b时上式等号成立.
∴$\frac{2b+3a}{ab}$的最小值为$\frac{25}{6}$.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f'(x),且有2f(x)+xf'(x)>x2,则不等式(x+2017)2f(x+2017)-f(-1)<0的解集为(-2018,-2017).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.命题“若x2=9,则x=±3”的否命题为“若x2=9,则x≠±3”
B.若命题P:?x0∈R,$x_0^2-3{x_0}-1>0$,则命题?P:?x∈R,$x_{\;}^2-3x-1<0$
C.设$\overrightarrow a,\overrightarrow b$是两个非零向量,则“$\overrightarrow a•\overrightarrow b<0$是“$\overrightarrow a,\overrightarrow b$夹角为钝角”的必要不充分条件
D.若命题P:$\frac{1}{x-2}>0$,则¬P:$\frac{1}{x-2}≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如果存在常数a,使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:2,3,6,m(m>6)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列{bn}的项数是n0(n0≥3),所有项之和是B,求证:数列{bn}是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(sinx+cosx)2+cos2x.
( I)求f(x)的最小正周期;
( II)求f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.记不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面区域为D,过区域D中任意一点P作圆x2+y2=1的两条切线,切点分别为A,B,则cos∠PAB的最大值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{3x+y-3≤0}\\{x≥0}\end{array}\right.$,则z=y-3x的最小值为$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x+1|-|x|+a,
(1)若a=-1,求不等式f(x)≥0的解集;
(2)若方程f(x)=2x有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行如图所示的程序框图,输出的T=16.

查看答案和解析>>

同步练习册答案