20£®Èç¹û´æÔÚ³£Êýa£¬Ê¹µÃÊýÁÐ{an}Âú×㣺ÈôxÊÇÊýÁÐ{an}ÖеÄÒ»ÏÔòa-xÒ²ÊÇÊýÁÐ{an}ÖеÄÒ»Ï³ÆÊýÁÐ{an}Ϊ¡°¶Ò»»ÊýÁС±£¬³£ÊýaÊÇËüµÄ¡°¶Ò»»ÏµÊý¡±£®
£¨1£©ÈôÊýÁУº2£¬3£¬6£¬m£¨m£¾6£©ÊÇ¡°¶Ò»»ÏµÊý¡±ÎªaµÄ¡°¶Ò»»ÊýÁС±£¬ÇómºÍaµÄÖµ£»
£¨2£©ÒÑÖªÓÐÇîµÈ²îÊýÁÐ{bn}µÄÏîÊýÊÇn0£¨n0¡Ý3£©£¬ËùÓÐÏîÖ®ºÍÊÇB£¬ÇóÖ¤£ºÊýÁÐ{bn}ÊÇ¡°¶Ò»»ÊýÁС±£¬²¢ÓÃn0ºÍB±íʾËüµÄ¡°¶Ò»»ÏµÊý¡±£»
£¨3£©¶ÔÓÚÒ»¸ö²»ÉÙÓÚ3ÏÇÒ¸÷Ïî½ÔΪÕýÕûÊýµÄµÝÔöÊýÁÐ{cn}£¬ÊÇ·ñÓпÉÄÜËü¼ÈÊǵȱÈÊýÁУ¬ÓÖÊÇ¡°¶Ò»»ÊýÁС±£¿¸ø³öÄãµÄ½áÂÛ£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÊýÁУº2£¬3£¬6£¬m£¨m£¾6£©ÊÇ¡°¶Ò»»ÏµÊý¡±ÎªaµÄ¡°¶Ò»»ÊýÁС±ËùÒÔa-m£¬a-6£¬a-3£¬a-2Ò²ÊǸÃÊýÁеÄÏÇÒa-m£¼a-6£¼a-3£¼a-2£¬ÓÉ´Ë¿ÉÇómºÍaµÄÖµ£»
£¨2£©ÓÉ¡°¶Ò»»ÊýÁС±µÄ¶¨ÒåÖ¤Ã÷ÊýÁÐ{bn}ÊÇ¡°¶Ò»»ÊýÁС±£¬¼´Ö¤¶ÔÊýÁÐ{bn}ÖеÄÈÎÒâÒ»Ïîbi£¨1¡Üi¡Ün0£©£¬a-bi=b1+£¨n0-i£©d=bn0+1-i¡Ê{bn}£¬´Ó¶ø¿ÉÇóÊýÁÐ{bn}ËùÓÐÏîÖ®ºÍ£»
£¨3£©¼ÙÉè´æÔÚÕâÑùµÄµÈ±ÈÊýÁÐ{cn}£¬ÉèËüµÄ¹«±ÈΪq£¨q£¾1£©£¬¿ÉÖªÊýÁÐ{cn}±ØÎªÓÐÇîÊýÁУ¬²»·ÁÉèÏîÊýΪnÏÔòci+cn+1-i=a£¨1¡Üi¡Ün£©£¬ÔÙ·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃµ½½áÂÛ£®

½â´ð £¨1£©½â£ºÒòΪ2£¬3£¬6£¬m£¨m£¾6£©ÊÇ¡°¶Ò»»ÏµÊý¡±ÎªaµÄ¡°¶Ò»»ÊýÁС±
ËùÒÔa-m£¬a-6£¬a-3£¬a-2Ò²ÊǸÃÊýÁеÄÏÇÒa-m£¼a-6£¼a-3£¼a-2£¬
¹Êa-m=2£¬a-6=3£¬¼´a=9£¬m=7£®
£¨2£©Ö¤Ã÷£ºÉèÊýÁÐ{bn}µÄ¹«²îΪd£¬
ÒòΪÊýÁÐ{bn}ÊÇÏîÊýΪn0ÏîµÄÓÐÇîµÈ²îÊýÁÐ
Èôb1¡Üb2¡Üb3¡Ü¡­¡Üb${\;}_{{n}_{0}}$£¬Ôòa-b1¡Ýa-b2¡Ýa-b3¡Ý¡­¡Ýa-b${\;}_{{n}_{0}}$£¬
¼´¶ÔÊýÁÐ{bn}ÖеÄÈÎÒâÒ»Ïîbi£¨1¡Üi¡Ün0£©£¬a-bi=b1+£¨n0-i£©d=b${\;}_{{n}_{0}}$+1-i¡Ê{bn}
ͬÀí¿ÉµÃ£ºb1¡Ýb2¡Ýb3¡Ý¡­¡Ýb${\;}_{{n}_{0}}$£¬a-bi=b1+£¨n0-i£©d=b${\;}_{{n}_{0}}$+1-i¡Ê{bn}Ò²³ÉÁ¢£¬
ÓÉ¡°¶Ò»»ÊýÁС±µÄ¶¨Òå¿ÉÖª£¬ÊýÁÐ{bn}ÊÇ¡°¶Ò»»ÊýÁС±£»
ÓÖÒòΪÊýÁÐ{bn}ËùÓÐÏîÖ®ºÍÊÇB£¬ËùÒÔB=$\frac{£¨{b}_{1}+{b}_{{n}_{0}}£©•{n}_{0}}{2}$=$\frac{a{n}_{0}}{2}$£¬¼´a=$\frac{2B}{{n}_{0}}$£»
£¨3£©½â£º¼ÙÉè´æÔÚÕâÑùµÄµÈ±ÈÊýÁÐ{cn}£¬ÉèËüµÄ¹«±ÈΪq£¨q£¾1£©£¬
ÒòΪÊýÁÐ{cn}ΪµÝÔöÊýÁУ¬ËùÒÔc1£¼c2£¼c3£¼¡­£¼cn£¬Ôòa-c1£¾a-c2£¾a-c3£¾¡­£¾a-cn£¬
ÓÖÒòΪÊýÁÐ{cn}Ϊ¡°¶Ò»»ÊýÁС±£¬Ôòa-ci¡Ê{cn}£¬ËùÒÔa-ciÊÇÕýÕûÊý
¹ÊÊýÁÐ{cn}±ØÎªÓÐÇîÊýÁУ¬²»·ÁÉèÏîÊýΪnÏÔòci+cn+1-i=a£¨1¡Üi¡Ün£©
¢ÙÈôn=3£¬ÔòÓÐc1+c3=a£¬c2=$\frac{a}{2}$£¬ÓÖc22=c1c3£¬Óɴ˵Ãq=1£¬Óëq£¾1ì¶Ü
¢ÚÈôn¡Ý4£¬ÓÉc1+cn=c2+cn-1£¬µÃc1-c1q+c1qn-1-c1qn-2=0
¼´£¨q-1£©£¨1-qn-2£©=0£¬¹Êq=1£¬Óëq£¾1ì¶Ü£»
×ۺϢ٢ڵ㬲»´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{cn}£®

µãÆÀ ±¾Ì⿼²éж¨Ò壬¿¼²éѧÉúµÄÔĶÁÄÜÁ¦£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®º¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬¶ÔÈÎÒâÁ½¸öÕýÊýx1£¬x2£¨x1£¼x2£©¶¼ÓÐx2f£¨x1£©£¾x1f£¨x2£©£¬¼Ça=$\frac{1}{2}$f£¨2£©£¬b=f£¨1£©£¬c=-$\frac{1}{3}$f£¨-3£©£¬Ôòa£¬b£¬cÖ®¼äµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®a£¾b£¾cB£®b£¾a£¾cC£®c£¾b£¾aD£®a£¾c£¾b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®2016Ä걸ÊÜÖõÄ¿µÄ¶þÊ®¹ú¼¯ÍÅÁìµ¼È˵Úʮһ´Î·å»áÓÚ9ÔÂ4¡«5ÈÕÔÚº¼Öݾٰ죬º¼ÖÝG20³ïί»áÒѾ­ÕÐļÅàѵ·­ÒëÁªÂçÔ±1000ÈË¡¢¼ÝʻԱ2000ÈË£¬Îª²âÊÔÅàѵЧ¹û£¬²ÉÈ¡·Ö²ã³éÑùµÄ·½·¨´Ó·­ÒëÁªÂçÔ±¡¢¼ÝʻԱÖй²Ëæ»ú³éÈ¡60ÈË£¬¶ÔÆä×öG20·å»áÖ÷Ìâ¼°Ïà¹Ø·þÎñÖ°Ôð½øÐвâÊÔ£¬½«ÆäËùµÃ·ÖÊý£¨·ÖÊý¶¼ÔÚ60¡«100Ö®¼ä£©ÖÆ³ÉÆµÂÊ·Ö²¼Ö±·½Í¼ÈçÏÂͼËùʾ£¬ÈôµÃ·ÖÔÚ90·Ö¼°ÆäÒÔÉÏ£¨º¬90·Ö£©Õߣ¬Ôò³ÆÆäΪ¡°G20ͨ¡±£®

£¨¢ñ£©ÄÜ·ñÓÐ90%µÄ°ÑÎÕÈÏΪ¡°G20ͨ¡±ÓëËù´Óʹ¤×÷£¨·­ÒëÁªÂçÔ±»ò¼ÝʻԱ£©Óйأ¿
£¨¢ò£©´Ó²Î¼Ó²âÊԵijɼ¨ÔÚ80·ÖÒÔÉÏ£¨º¬80·Ö£©µÄ¼ÝʻԱÖÐËæ»ú³éÈ¡4ÈË£¬4ÈËÖС°G20ͨ¡±µÄÈËÊýÎªËæ»ú±äÁ¿X£¬ÇóXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®
P£¨K2¡Ýk0£©0.100.050.0100.001
k02.7063.8416.63510.828
¸½²Î¿¼¹«Ê½ÓëÊý¾Ý£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÈçÏÂͼ£¨1£©Ëùʾ£¬ÒÑÖªÕý·½ÐÎAMCDµÄ±ß³¤Îª2£¬ÑÓ³¤AM£¬Ê¹µÃMΪABÖе㣬Á¬½áAC£®ÏÖ½«¡÷ADCÑØACÕÛÆð£¬Ê¹Æ½ÃæADC¡ÍÆ½ÃæABC£¬µÃµ½¼¸ºÎÌåD-ABC£¬Èçͼ£¨2£©Ëùʾ£®
£¨1£©ÇóÖ¤£ºBC¡ÍÆ½ÃæACD£»    £¨2£©Ç󼸺ÎÌåD-ABCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=12£¬BC=5£¬ÒÔA¡¢BΪ½¹µãµÄË«ÇúÏß$M£º\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$Ç¡ºÃ¹ýC¡¢DÁ½µã£¬ÔòË«ÇúÏßMµÄ±ê×¼·½³ÌΪ$\frac{x^2}{16}-\frac{y^2}{20}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£¬ÇÒacosA=bcosB£¬Ôò¸ÃÈý½ÇÐεÄÐÎ×´ÊǵÈÑüÈý½ÇÐλòÖ±½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{3x-y-6¡Ü0}\\{x-y+2¡Ý0}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$ÈôÄ¿±êº¯Êýz=ax+by£¨a£¾0£¬b£¾0£©µÄÖµÊÇ×î´óֵΪ12£¬Ôò$\frac{2b+3a}{ab}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{25}{6}$B£®$\frac{8}{3}$C£®$\frac{11}{3}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®É踴Êýz=2+i£¬Ôò|z-$\overline{z}$|=£¨¡¡¡¡£©
A£®4B£®0C£®2D£®$2\sqrt{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÉèÃüÌâp£º?x0¡Ê£¨0£¬+¡Þ£©£¬lnx0=-1£®ÃüÌâq£ºÈôm£¾1£¬ÔòÍÖÔ²$\frac{{x}^{2}}{m}$+y2=1µÄ½¹¾àΪ2$\sqrt{m-1}$£¬ÄÇô£¬ÏÂÁÐÃüÌâÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®©VqB£®£¨©Vp£©¡Å£¨©Vq£©C£®p¡ÄqD£®p¡Ä£¨©Vq£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸