精英家教网 > 高中数学 > 题目详情
8.如下图(1)所示,已知正方形AMCD的边长为2,延长AM,使得M为AB中点,连结AC.现将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图(2)所示.
(1)求证:BC⊥平面ACD;    (2)求几何体D-ABC的体积.

分析 (1)由已知求出AC,BC的长,利用勾股定理可得AC⊥BC,再由面面垂直的性质可得BC⊥平面ACD;  
(2)由(1)知BC⊥平面ACD,然后利用等积法即可求得几何体D-ABC的体积.

解答 证明:(1)由图(1)可知,$AC=BC=2\sqrt{2}$,AB=4,
∴AC2+BC2=AB2,则AC⊥BC,
又∵平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC?平面ABC,
∴BC⊥平面ACD;
解:(2)由(1)可知,BC⊥平面ACD,则BC即为几何体B-ACD的高,
∴${V_{D-ABC}}={V_{B-ACD}}=\frac{1}{3}{S_{△ACD}}•BC=\frac{1}{3}×(\frac{1}{2}×2×2)×2\sqrt{2}=\frac{4}{3}\sqrt{2}$.

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.直线l1:ax+y-a+1=0,直线l1:4x+ay-2=0,则“a=±2”是“l1∥l2”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>b>c且$\frac{2}{a-b}+\frac{1}{b-c}≥\frac{m}{a-c}$恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2017}}}}$等于(  )
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2017}{2018}$D.$\frac{4034}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.命题“若x2=9,则x=±3”的否命题为“若x2=9,则x≠±3”
B.若命题P:?x0∈R,$x_0^2-3{x_0}-1>0$,则命题?P:?x∈R,$x_{\;}^2-3x-1<0$
C.设$\overrightarrow a,\overrightarrow b$是两个非零向量,则“$\overrightarrow a•\overrightarrow b<0$是“$\overrightarrow a,\overrightarrow b$夹角为钝角”的必要不充分条件
D.若命题P:$\frac{1}{x-2}>0$,则¬P:$\frac{1}{x-2}≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若等差数列{an}前9项的和为27,且a10=8,则d=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如果存在常数a,使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:2,3,6,m(m>6)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列{bn}的项数是n0(n0≥3),所有项之和是B,求证:数列{bn}是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.记不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面区域为D,过区域D中任意一点P作圆x2+y2=1的两条切线,切点分别为A,B,则cos∠PAB的最大值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(a∈R+)在区间[2,4]上为单调递增函数,则$\frac{25}{a}$+a的取值范围为(  )
A.[10,+∞)B.[$\frac{29}{2}$,+∞)C.[$\frac{25}{2}$,+∞)D.[$\frac{41}{4}$,+∞)

查看答案和解析>>

同步练习册答案